(some) Exclusive Physics Opportunities at the EIC and the Tools Needed to Study Them

Alex Jentsch, Brookhaven National Lab ajentsch@bnl.gov

> Workshop on Forward Physics at the LHC and EIC October 23rd to 27th, 2023 Phyzikzontrum Bad Honnef

Phyzikzentrum Bad Honnef, Bad Honnef, Germany

(some) Exclusive Processes at the EIC

(some) Exclusive **Physics** at the EIC

...and MANY more!

 Z. Tu, A. Jentsch, et al., Physics Letters B, (2020)
 I. Friscic, D. Nguyen, J. R. Pybus, A. Jentsch, *et al.*, Phys. Lett. B, **Volume 823**, 136726 (2021)
 W. Chang, E.C. Aschenauer, M. D. Baker, A. Jentsch, J.H. Lee, Z. Tu, Z. Yin, and L.Zheng, Phys. Rev. D **104**, 114030 (2021)

[4] A. Jentsch, Z. Tu, and C. Weiss, Phys. Rev. C **104**, 065205, (2021) **(Editor's Suggestion)**

u-channel backward exclusive electroproduction

8

- > Physics channels require tagging of charged hadrons (protons, pions) or neutral particles (neutrons, photons) at very-forward rapidities $(\eta > 4.5)$.
- \succ Different final states \rightarrow tailored detector subsystems.
- Various beams and energies (h: 41, 100-275 GeV, e: 5-18 GeV; e+p, e+d, e+Au, etc.).
- Placing and operation of far-forward detectors challenging due to integration with accelerator.

Physics focus: Deuterons and Tagged DIS

Deuteron tagged DIS as a tool at the EIC

- Tagged DIS measurements on light nuclei → "tag" (generally) far-forward particles in final state for useful kinematic information!
 - Provides more information than inclusive cross sections!
- Lots of topics!
 - Short-range correlations.
 - Gluon distributions in nuclei.
 - Free neutron structure functions.
 - Nuclear modifications of nucleons in light nuclei.
 - EMC effect, anti-shadowing, etc.

Tagged DIS with deuterons

- Spectator kinematics → determines nuclear configuration.
 - Loosely bound configuration enables extraction of free nucleon structure via pole extrapolation.
 - Configuration with strongly-interacting nucleons opens up study of nuclear modifications.
 - Differential study of transition region where nuclear effects manifest!

Tagged DIS on the deuteron enables study of free and modified nuclear structure in a single nucleus!

Full Detector Simulations – Tagged Spectators

Deuterons: Gluons and Short-Range Correlations

Monte Carlo for all e+d studies presented here

General-purpose eA DIS MC generator https://eic.github.io/software/beagle.html

Wan Chang, Elke-Caroline Aschenauer, Mark D. Baker, Alexander Jentsch, Jeong-Hun Lee, Zhoudunming Tu, Zhongbao Yin, and Liang Zheng Phys. Rev. D **106**, 012007 (2022)

- Use BeAGLE to simulate the hard e + (active) nucleon scattering and primary process (e.g. J/ψ production, DIS, etc.)
 - For heavy A: DPMJET and FLUKA
 - <u>For deuteron</u>: Spectator momentum spectra calculated via deuteron spectral function, using parametrization of Ciofi and Simula.
 - C. Ciofi degli Atti and S. Simula, Phys. Rev. C 53, 1689 (1996)
- BeAGLE MC samples passed through full detector simulations, including beam effects to study prospects for future analysis!

Short-Range Correlations in Deuterons

- J/ ψ produced at mid-rapidity.
 - Sensitive to gluons!
- Tagging active and spectator nucleons allow for experimental control of nuclear configuration → study transition into SRC region (e.g. where nuclear effects become larger).
- Tagging **both** nucleons allows for full reconstruction of momentum transfer!

Z. Tu, A. Jentsch et al., Phys. Lett. B, 811 (2020)

Short-Range Correlations in Deuterons

Z. Tu, A. Jentsch et al., Phys. Lett. B, 811 (2020)

 Neutron "spectator" case.

18x110GeV "active" protons "active" protons J/ψ MC Gen. and ᡁᠬ᠊᠋ᡀ᠋ᡗᡗᡀᡁᠬᡙᡊᢧᠬᡁ᠆᠆ᡐᠺᡗᡗᠬᡅ᠇ᡡᢖ OMD $t = (p' - p)^2$ 2500 **BO** Neutron "spectator" case. 10³ 2000 d 10² n $t' = (n' - d)^2 - M_n$ 1000 **B0 detector** RP Polar angle, 0 [mrad] ZDC Protons lost in transition between very far-Off-momentum forward detectors and protons lost in B0 spectrometer. quadrupole magnets. OMD 21

Short-Range Correlations in Deuterons

Z. Tu, A. Jentsch et al., Phys. Lett. B, 811 (2020)

Short-Range Correlations in Deuterons 18x110GeV "active" protons "active" protons J/ψ MC Gen. 20002 _֎ֈֈՠֈֈ_{ֈՠՠ}ֈՠ_ՠՠֈՠՠ OMD $t = (p' - p)^2$ 2500 **BO** Neutron "spectator" case. 10³ **BeAGLE** eD 18x110 GeV $\gamma^* d \rightarrow J/\psi + p' + n'$ $t' = (n' - d)^2 - M_n$ 1000 10⁷ leading proton 10⁶ Polar angle, 0 [mrad] Azimuthal angle, o [rad] (GeV t-reconstruction using doubledN/dt (10⁴ Protons lost in transition tagging (both proton and between very farneutron reconstructed). **Off-momentum** forward detectors and protons lost in B0 spectrometer. ★ Truth 10^{3} Acceptance only quadrupole magnets. Full simulation 0 $t=(p'-(-n))^2 (GeV^2)$

Spectator information is the "dial" for the SRC region.

Z. Tu, A. Jentsch et al., Phys. Lett. B, 811 (2020)

Deuterons: Free Neutron Structure

- Protons well-studied at HERA -> So...why the neutron?
 - Flavor separation, baseline for studies of nuclear modifications.

е

- Protons well-studied at HERA -> So...why the neutron?
 - Flavor separation, baseline for studies of nuclear modifications.
- What makes the free neutron structure hard to measure?
 - Can only access neutrons in a nucleus.
 - Includes nuclear binding effects, Fermi motion, etc.

- Protons well-studied at HERA -> So...why the neutron?
 - Flavor separation, baseline for studies of nuclear modifications.
- What makes the free neutron structure hard to measure?
 - Can only access neutrons in a nucleus.
 - Includes nuclear binding effects, Fermi motion, etc.
- <u>Two options:</u>
 - 1. Inclusive measurements \rightarrow Average over all nuclear configurations, use theory input to correct for nuclear binding effects.

- Protons well-studied at HERA -> So...why the neutron?
 - Flavor separation, baseline for studies of nuclear modifications.
- What makes the free neutron structure hard to measure?
 - Can only access neutrons in a nucleus.
 - Includes nuclear binding effects, Fermi motion, etc.
- <u>Two options:</u>
 - 1. Inclusive measurements \rightarrow Average over all nuclear configurations, use theory input to correct for nuclear binding effects.
 - 2. Tagged measurements \rightarrow Select nuclear configuration via spectator kinematics, allows for differential study.
 - Spectator kinematics provide a knob to dial in different regions of interest for study (i.e. high p_T → SRC physics; very low p_T ~ 0 GeV/c yields access to on-shell extrapolation).
 - On-shell extrapolation enables access to free nucleon structure.
 - M. Sargsian, M. Strikman PLB 639 (iss. 3-4) 223231 (2006)

- Previous fixed target experiments with tagging have measured the neutron F₂ at high-x.
 - CLAS Phys. Rev. Lett. **108**, 199902 (2012)
 - CLAS + BONUS Phys. Rev. C 89, 045206 (2014)
 - measurement had a lower p_T cutoff ~ 70 MeV/c.
- Future JLAB 12 GeV studies planned.
 - ALERT https://arxiv.org/abs/1708.00891
 - CLAS https://www.jlab.org/exp_prog/proposals/10/PR12-06-113-pac36.pdf

Tagged DIS @ the EIC:

- In a collider, can tag spectators down to p_T ~ 0 MeV/c → Enables extraction of free neutron structure function via pole extrapolation.
- Can extend tagged DIS measurement to $x \leq 0.1$.

Tagged Deuteron Cross Section

e'e'npspectator nucleon (p_{pT}, α_p)

$$\alpha_p$$
: light-cone momentum fraction

$$\alpha_p \equiv \frac{2p_p^+}{p_d^+} = \frac{2(E_p + p_{z,p})}{M_d}$$

 S_d : deuteron spectral function pole

Total cross section $d\sigma = Flux(x,Q^2) \times \sigma_{red,d} \times \frac{dx}{2} dQ^2 \frac{d\phi_{e'}}{2\pi} [2(2\pi)^3]^{-1} \frac{d\alpha_p}{\alpha_p} \frac{dp_{pT}^2}{2} d\phi_p$

Tagged Deuteron Cross Section

$$\alpha_p$$
: light-cone momentum fraction

$$\alpha_p \equiv \frac{2p_p^+}{p_d^+} = \frac{2(E_p + p_{z,p})}{M_d}$$

 S_d : deuteron spectral function pole

30

Total cross section $d\sigma = Flux(x,Q^2) \times \sigma_{red,d} \times \frac{dx}{2} dQ^2 \frac{d\phi_{e'}}{2\pi} [2(2\pi)^3]^{-1} \frac{d\alpha_p}{\alpha_p} \frac{dp_{pT}^2}{2} d\phi_p$

- Measure the cross-section differential on the spectator kinematics.
 - Spectator kinematics provide control knob on the nuclear configuration.
- Solve for the deuteron reduced cross section.

Tagged Deuteron Cross Section

$$\alpha_p$$
: light-cone momentum fraction

$$\alpha_p \equiv \frac{2p_p^+}{p_d^+} = \frac{2(E_p + p_{z,p})}{M_d}$$

 S_d : deuteron spectral function pole

Spectator nucleon (p_{pT}, α_p) Total cross section $d\sigma = Flux(x, Q^2) \times \sigma_{red,d} \times \frac{dx}{2} dQ^2 \frac{d\phi_{e'}}{2\pi} [2(2\pi)^3]^{-1} \frac{d\alpha_p}{\alpha_p} \frac{dp_{pT}^2}{2} d\phi_p$

- Measure the cross-section differential on the spectator kinematics.
 - Spectator kinematics provide control knob on the nuclear configuration.
- Solve for the deuteron reduced cross section.
- Deuteron reduced cross section related to the struck nucleon reduced cross section via the deuteron spectral function.

$$\sigma_{red,d}(x,Q^2; p_{pT},\alpha_p) = [2(2\pi)^3] \times S_d(p_{pT},\alpha_p) [pole] \times \sigma_{red,n}(x,Q^2)$$

Measurement of the deuteron reduced cross section yields access to the struck nucleon structure via the tagged spectator!

M. Strikman and C. Weiss, Phys. Rev. C 97, 035209 (2018)

Pole Extrapolation

C. Weiss and W. Cosyn Phys. Rev. C **102**, 065204 (2020)

- Divide by deuteron spectral function (nucleon pole).
 - The resulting distribution is the active nucleon reduced cross section as a function of p_{pT}^2 .

$$\sigma_{red,n}(x,Q^2) = \frac{\sigma_{red,d}(x,Q^2; p_{pT},\alpha_p)}{[2(2\pi)^3]S_d(p_{pT},\alpha_p)[pole]}$$

 $p_{pT}^2 > 0$ physical region

 $p_{pT}^2 \rightarrow -a_T^2$ pole extrapolation

$$S_d(p_{pT}, \alpha_p)[pole] = \frac{R}{(p_{pT}^2 + a_T^2)^2}$$
 Deuteron spectral function

$$R = 2\alpha_p^2 m_N \Gamma^2 (2 - \alpha_p)$$

$$a_T^2 = m_N^2 - \alpha_p (2 - \alpha_p) \frac{M_d^2}{4}$$

$$R = residue \ of \ spectral \ function$$

$$a_T^2 = position \ of \ pole$$

32

Pole Extrapolation

C. Weiss and W. Cosyn Phys. Rev. C 102, 065204 (2020)

- Divide by deuteron spectral function (nucleon pole).
 - The resulting distribution is the active nucleon reduced cross section as a function of p_{pT}^2 .

$$\sigma_{red,n}(x,Q^2) = \frac{\sigma_{red,d}(x,Q^2; p_{pT},\alpha_p)}{[2(2\pi)^3]S_d(p_{pT},\alpha_p)[pole]}$$

 $p_{pT}^2 > 0$ physical region

 $p_{pT}^2 \rightarrow -a_T^2$ pole extrapolation

 $S_d(p_{pT}, \alpha_p)[pole] = \frac{R}{(p_{pT}^2 + a_{T}^2)^2}$ Deuteron spectral function

33

$$R = 2\alpha_p^2 m_N \Gamma^2 (2 - \alpha_p)$$

$$a_T^2 = m_N^2 - \alpha_p (2 - \alpha_p) \frac{M_d^2}{4}$$

$$R = residue \text{ of spectral function}$$

$$a_T^2 = position \text{ of pole}$$

Extrapolate to $p_{pT}^2 \rightarrow -a_T^2$ to extract F_2 to extract free nucleon F₂.

 Pole extrapolation selects large-size pn configurations where nuclear binding and FSI are absent.

Free Neutron F₂ Extraction

A. Jentsch, Z. Tu, and C. Weiss, Phys. Rev. C **104**, 065205, (2021) **(Editor's Suggestion)**

Start with the deuteron reduced cross section → <u>direct measurement!</u>

Free Neutron F₂ Extraction

A. Jentsch, Z. Tu, and C. Weiss, Phys. Rev. C **104**, 065205, (2021) (Editor's Suggestion)

35

- Start with the deuteron reduced cross section → direct measurement!
- Multiply by the inverse of the deuteron spectral function pole.

 $\frac{1}{S_d(p_{pT}, \alpha_p)[pole]}$

(inverse pole of deuteron spectral function)

Free Neutron F₂ Extraction

A. Jentsch, Z. Tu, and C. Weiss, Phys. Rev. C **104**, 065205, (2021) **(Editor's Suggestion)**

Free Proton F₂ Extraction

A. Jentsch, Z. Tu, and C. Weiss, Phys. Rev. C **104**, 065205, (2021) **(Editor's Suggestion)**

$$\sigma_{red,p}(x,Q^2) = \frac{\sigma_{red,d}}{[2(2\pi)^3]S_d(p_{nT},\alpha_n)}$$

Closure Test – Pole Extrapolation vs. Integration (generator level)

- Pole factor removed using "event by event (EbE)" (method II) approach.
 - Pole factor calculated and applied for each event (i.e. pole factor calculated for each exact nuclear configuration).

- Result compared to integration (method I) over the spectator kinematics to recover the original input.
- Remaining differences due to fitting and statistics.

Deuterons: The EMC Effect (on-going study)

The EMC Effect

- Discovered by the European Muon Collaboration ~40 years ago.
 - Puzzle: why the dip?
- Still an unanswered question, and one we hope the EIC can aid in answering.
- Established via measurements with **different nuclear targets**!

Understanding the origin of the EMC effect and nuclear modifications of prime interest in nuclear physics!

The Deuteron – a stand-alone lab for nuclear physics

Off-shellness in deuterons as a probe of nuclear effects.

 $-t'^2 = M_N^2 - (p_d - p_p)^2$

Virtuality/off-shellness in the deuteron

<u>Question:</u> can the EMC effect be controlled via the offshellness without altering the nuclear species?

Simulating the EMC Effect in BeAGLE

Linear fit to virtuality dependence → Minimal parametrization: Frankfurt and Strikman, Nuc. Phys. B **250** (1985) C. Ciofi *et al.*, Phys. Rev. C **76**, 055206 (2007) And others...

Simulating the EMC Effect in BeAGLE

BeAGLE

- > Only apply to $0.3 < x_{bj} < 0.7$
- ➢ Q² independent
- > Weight = F_2 (bound)/ F_2 (free)

Linear fit to virtuality dependence → Minimal parametrization: Frankfurt and Strikman, Nuc. Phys. B **250** (1985) C. Ciofi *et al.*, Phys. Rev. C **76**, 055206 (2007) And others...

Simulating the EMC Effect in BeAGLE

EMC Weight Distribution, $0.45 < x_n < 0.55$

Result → EMC Weight in BeaGLE

- Weight factor simulates the EMC effect from the *virtuality* in the deuteron.
- Applied event-by-event to compare with and without weight → enables study of sensitivity to EMC effect in various observables.

The EMC Effect @ the EIC

• Approach:

- Measure deuteron reduced crosssection σ_D , with and without the offshell effects included.
 - No FSI included.
- Ratio of σ_D inside and outside the EMC region (e.g. x ~ 0.5 and x ~ 0.2)
- Quantity allows direct comparison of cross section with and without EMC weight (x ~ 0.2 chosen to avoid antishadowing region).

$$\frac{\sigma_D(\alpha_p, p_{T,p}, x_n = 0.5)}{\sigma_D(\alpha_p, p_{T,p}, x_n = 0.2)}$$

The EMC Effect @ the EIC

<u>Approach:</u>

- Measure deuteron reduced crosssection σ_D , with and without the offshell effects included.
 - No FSI included.
- Ratio of σ_D inside and outside the EMC region (e.g. x ~ 0.5 and x ~ 0.2)
- Establish required integrated luminosity.
 - Challenging measurement → high-x + low probability nuclear configuration + lower beam energies.
- Neutron spectator not possible in 5x41 GeV/n due to aperture limits for detector acceptance.

The EMC Effect @ the EIC 5x110 GeV/n Integrated Luminosity ~16 fb-1

EIC versatility → different beam energy configurations!

- Higher energy configuration (5x110 GeV/n).
- More favorable detector acceptance -> study of proton *and* neutron spectators with same beam configuration.
- Measurement of same observable with different beam energies/spectator reconstruction enables better understanding of experimental systematics.

Different nuclear configurations

- EIC kinematic coverage enables broad, differential study of effects.
 - Spectator kinematic coverage \rightarrow varied deuteron nuclear configurations.

Different nuclear configurations

Summary and Takeaways

- Far-forward physics characterized by exclusive + diffractive final states.
 - Lots to unpack! proton spin, neutron structure, saturation, partonic imaging, meson structure, etc.
- There is lots of interest in the EIC community for exclusive physics → I have only shown a few studies here.
 - Exciting time to get involved!!

Email me if you have any questions: ajentsch@bnl.gov

Interested the EIC far-forward physics?? Join the ePIC Collaboration and get involved!

Wiki: https://wiki.bnl.gov/EPIC/index.php?title=Policies

Thank you!

They (mostly) get along.

She's in a death metal band.

Where do the particles go past the BO?

B2apf

Where do the particles go past the BO?

Protons with ~35-50% momentum

w.r.t. steering magnets.

- Off-momentum protons \rightarrow smaller magnetic rigidity \rightarrow greater bending in dipole fields.
- Important for any measurement with nuclear breakup!

OMD

B1apf

protons with ~50-

60% momentum

w.r.t. steering

magnets.

B2apf

Roman Pots and OMD

Neutron Structure

- Protons well-studied at HERA -> So...why the neutron? _e
 - Flavor separation, baseline for studies of nuclear modifications.

Free Nucleon Structure

A. Jentsch, Z. Tu, and C. Weiss, Phys. Rev. C **104**, 065205, (2021) (Editor's Suggestion)

Open circles: "inclusive" measurement. **Stars:** pole extrapolation procedure.

Differences driven by evaluation of pole (average in bin, vs. event-by-event).

 Similar kinds of high-precision results achievable as was done for proton F₂ at HERA!

Final-State Interaction: Physical Picture

Momentum distribution of slow hadrons in nucleon rest frame: Cone in virtual photon direction.

Space-time picture in deuteron rest-frame

- $\nu \gg$ hadronic scale: large phase space for hadron production.
- "Fast" hadrons $E_h = \mathcal{O}(\nu) \rightarrow$ current fragmentation region: Formed outside the nucleus, interaction with the spectator suppressed.
- "Slow" hadrons $E_h = O(1 \text{ GeV}) \rightarrow \text{target}$ fragmentation region: Formed inside the nucleus, interact with hadronic cross sections.

Source of FSI in tagged DIS!

Implementation

- Distributions of slow hadrons in DIS on nucleon: kinematic dependence, empirical distributions
- Hadron-nucleon scattering amplitudes: Re/Im
- Calculation of rescattering process: phase space integral
- Study kinematic dependences: x, α_p, p_{pT}

Strikman, Weiss PRC97 (2018) 035209

FSI: Kinematic Dependence

- FSI Ratio S_d [FSI]/ S_d [IA]
- p_{pT} dependence: weak up to ~0.3 GeV, strong rise above
- α_p dependence: FSI increases with α_p-1 at small p_{pT}
- x dependence: FSI decreases with increasing x due to depletion of slow hadrons

FSI: pT-integrated cross-section

• p_{pT} - integrated cross section:

$$\sigma = \int_{p_{pT}[max]} d^2 p_{pT} S_d(\alpha_p, p_{pT}) \sigma_n(x_n)$$

- Here: Plotted as a function of $x_n = x/(2 \alpha_p)$
- Simple dependence of α_p and x_n .
- FSI effect typically 10-20%

FSI: Initial state vs. final-state modification

- Here: p_{pT} integrated cross section, $p_{pT}[max] = 0.4 \text{ GeV}$
- EMC Effect: virtuality-dependent model

$$\frac{\sigma_n[bound]}{\sigma_n[free]} = 1 + \frac{t}{\langle t \rangle} f_{EMC}(x_n)$$

$$t = t(\alpha_{p,p_{pT}})$$

Compare EMC and FSI

\rightarrow Currently in-progress!

B0 Detectors

Detector subsystem embedded in an accelerator magnet.

This is the opening where the detector planes will be inserted

Hadrons

B0 Detectors

Detector subsystem embedded in an accelerator magnet.

B0 Tracking and EMCAL Detectors

PbWO₄/LYSO EMCAL (behind tracker)

- > <u>Technology choices:</u>
 - > Tracking: 4 layers AC-LGADs
 - > PbWO4 or LYSO EMCAL.

- Status
 - ✓ Used to reconstruct charged particles and photons.
 - ✓ Acceptance: $5.5 < \theta < 20.0$ mrad on one side, up to 13mrad on the other.
 - Focus now is on readout, new tracking software, and engineering support structure.
 - Stand-alone simulations have demonstrated tracking resolution.
 - https://indico.bnl.gov/event/17905/
 - https://indico.bnl.gov/event/17622/

Design for two detectors is converging:

Si Tracker:

- 4 Layers of AC-LGAD → provide ~20um spatial resolution (with charge sharing) and 20-40ps timing resolution.
- Technology overlap w/ Roman pots
- EM Calorimeter:
 - 135 2x2x7*cm³ LYSO crystals
 - Good timing and position resolution
 - Technology overlap with ZDC

CAD Look credit: Jonathan Smith

* ZDC wants slightly longer crystals, ideally, we will use the same length in both detectors

Si Tracker:

- Resolution plots made by Alex Jentsch with standalone setup (more <u>here</u> and <u>here</u>)
- ACTS Tracking (a long-standing problem) was recently solved and is implemented in the simulation (see recent Sakib R <u>slides</u>), we expect more results soon

EM Calorimeter:

- Caveat studies performed with PbWO4 crystals, LYSO crystals still to be implemented in the simulation.
- General performance studies by Michael Pitt (more in <u>FF weekly meeting</u>)
- Sensitivity to soft photons (see Eden Mautner <u>talk</u> at the EICUG EC workshop early this week)

- 27cm spacing with fully AC-LGAD system and 5% radiation length may be the most-realistic option.
 - Reduced spacing (from 30cm) to make room for EMCAL.
- Needs to be looked at with proper field map and layout.
- Resolution impact on physics still being evaluated.

Note: momentum resolution (dp/p) is ~2-4%, depending on configuration.

B EMCal - Performance

- Acceptance $5.5 < \theta < 23$ mrad
- Very low material budget in $5 < \eta < 5.5$

Particles within 5.5 < θ < 15 mrad don't cross the beampipe

Photons:

- High acceptance in a broad energy range (> 100s MeV), including ~MeV de-excitation photons
- Energy resolution of 6-7%
- Position resolution of ~3 mm

Neutrons:

50% detection efficiency (λ is almost 1)

siter

More engineering work is currently underway to optimize the layout, support structure, cooling, and movement systems for inserting the detectors into the beamline.

Roman "Pots" @ the EIC

 $\sigma(z)$ is the Gaussian width of the beam, $\beta(z)$ is the RMS transverse beam size, ε is the beam emittance, and D is the momentum dispersion.

$$\sigma_{x,y} = \sqrt{\beta(z)_{x,y}\epsilon_{x,y} + \left(D_{x,y}\frac{\Delta p}{p}\right)^2}$$

DD4HEP Simulation

Low-pT cutoff determined by beam optics.

- \succ The safe distance is ~10 σ from the beam center.
- \succ 1 σ ~ 1mm
- These optics choices change with energy, but can also be changed within a single energy to maximize either acceptance at the RP, or the luminosity.

<u>High Divergence</u>: smaller β^* at IP, but bigger $\beta(z = 30m) \rightarrow$ higher lumi., larger beam at RP

10⁴

10³

10²

275 GeV DVCS Proton Acceptance

<u>High Divergence</u>: smaller β^* at IP, but bigger $\beta(z = 30m) \rightarrow$ higher lumi., larger beam at RP

<u>High Acceptance:</u> larger β^* at IP, smaller $\beta(z = 30m) \rightarrow$ **lower lumi., smaller beam at RP**

angle [mrad] **275 GeV DVCS Proton Acceptance** 10⁴ 15 GeV on 50 GeV 25 x_y_image_RI 20 10³ DVCS - 20 GeV x 250 GeV - 10 fb⁻¹ 00965 scattering BMS : 15 8.024 15 GeV on 100 GeV 10² dơ/dltl pb/GeV ရွ **10** 15 GeV on 250 GeV oroton 100 50 150 200 Using the two configurations, we are able to measure the low-t HD HA 10^{2} region (with better acceptance) and Events high-t tail (with higher luminosity). gh / 10 **<u>High Acceptance:</u>** larger β^* at IP, smaller $\beta(z = 30m) \rightarrow$ lower lumi., smaller beam at RP 1.6 0.2 0.4 0.6 0.8 1.2 1.4 <u>ltl GeV²</u> 100 x coordinate [mm] DVCS proton P_[GeV/c

Summary of Detector Performance

- All beam effects included!
 - Angular divergence.
 - Crossing angle.
 - Crab rotation/vertex smearing.

Beam effects the dominant source of momentum smearing!

Zero-Degree Calorimeter

Need a calorimeter which can accurately reconstruct neutral particles

B1apf

neutrons and photons Neutrons and photons react differently in materials – need both an EMCAL and an HCAL!

B2apf

ZDC

Zero-Degree Calorimeter

Need a calorimeter which can accurately reconstruct neutral particles

photon

B1apf

neutrons and Neutrons and photons react differently in materials – need both an EMCAL and an HCAL!

neutron

photons

B2apf

ZDC

ZDC - What's New

- 1st Silicon & crystal calorimeter (PbWO4 or LYSO):
 - Smaller lateral dimension (x, y) = (56, 54) cm.

Overall length within 2m limit

- Pb-Scintillator (+ fused silica)
 - Towers of 10cm x 10cm x 48cm, each module 60cm x 60cm x 48cm
 - 3 modules

ZDC - Performance

- Energy resolution in the new design acceptable → Optimization, test of different ideas within the size limit.
- Next steps:
 - Implementation of reconstruction
 - Position resolution & shower development study ongoing for the imaging part of HCAL

Short-Range Correlations

"The nucleus can often be approximated as an independent collection of protons and neutrons confined in a volume, but for short periods of time, the nucleons in the nucleus can strongly overlap. This quantum mechanical overlapping, known as a nucleon-nucleon short-range correlation, is a manifestation of the nuclear strong force, which produces not only the long-range attraction that holds matter together, but also the short-range repulsion that keeps it from collapsing."

Excerpt from: https://www.jlab.org/research/nucleon_nucleon

Lots of SRC pairs!!! -> Really tough!

Use deuteron as "SRC laboratory", where nucleon kinematics are readily accessible.

Short-Range Correlations in Deuterons

Z. Tu, A. Jentsch et al., Phys. Lett. B, 811 (2020)

MC generated events shown in black – "accepted" protons in red. Acceptance refers to particles which are actually captured by the detector.

Short-Range Correlations in Deuterons

Z. Tu, A. Jentsch et al., Phys. Lett. B, 811 (2020)

- Spectator kinematic variables reconstructed over a broad range.
- All detector and beam effects included in the full GEANT simulations!
 - Bin migration is observed due to smearing in the reconstruction.

In the proton spectator case, essentially all spectators tagged up to pT ~ 600 MeV/c.
Active neutrons only tagged up to 4.5 mrad → double-tagging efficiency very low.

Proton "spectator" case.

Spectator kinematic variables reconstructed over a broad range. Bin migration is observed due to smearing in the reconstruction. Each plot shows the MC (closed circles), acceptance effects only (open circles), and full reconstruction (open squares).

DODD

a

 $t' = (n' - d)^2 - M_n$

18x110GeV

 $t = (p' - p)^2$

In the proton spectator case, essentially all spectators tagged.

- Active neutrons only tagged up to 4.5 mrad.

Light nuclei – Helium-3: Neutron Spin Structure

Neutron Spin Structure in He3

- Studies of neutron structure with a *polarized* neutron.
- More challenging final state tagging since *both* protons must be tagged.
- MC events generated with CLASDIS in fixed-target frame, and then boosted to collider frame.

I. Friscic, D. Nguyen, J. R. Pybus, A. Jentsch, *et al.,* Phys. Lett. B, **Volume 823**, 136726 (2021)

Neutron Spin Structure in He3

• Spin structure probed via spin asymmetries!

- (double) Tagged DIS measurement capable of measuring Aⁿ₁ directly!
- Complementary to measurements at JLAB.

Neutron Spin Structure in He3

- Neutron spin asymmetries can be measured from kinematics of the tagged protons.
- EIC can build upon measurements at JLAB by reducing polarization uncertainties, and opening a broader Q² range for study.
- Can aid in our understanding of quark orbital angular momentum in nucleons.

Pole Extrapolation

C. Weiss and W. Cosyn Phys. Rev. C **102**, 065204 (2020)

Effects of momentum smearing on pole factor

- Detector smearing has a drastic impact when the EbE method is used.
 - If you calculate the pole factor on an EbE basis with *smeared* spectator kinematic values, you now remove the pole factor for the wrong nuclear configuration!

Kinematic Distributions and Smearing

- Event sub-sample passed through full GEANT4 simulations.
 - Smearing parametrizations extracted for (p_x, p_y, p_z, E).
- Larger overall smearing observed for neutrons, consistent with previous study.
- Anomalous proton smearing at high pT and p > 120 GeV/c and p < 100 GeV/c due to linear transfer matrix assumption.
 - Will be fixed in the future for TDR studies.