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Accessing Exclusive Reactions at the EIC
hadronic calorimeters e/m calorimeters          

ToF, DIRC,  RICH detectorsMAPS tracker MPG trackers

solenoid coils

See Silvia’s talk from Monday!
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Overall detector requirements:
• Large rapidity (-4 < h < 4) coverage; 

and far beyond in far-forward/far-
backward detector regions
• Rapidity is related to the polar 

angle → 0 < h < 4 equates to 
2.1° < 𝜃 < 90°

𝜃

Proton/nucleus beam

Scattered (detected) particles

Electron beam

Scattered (detected) electron

Accessing Exclusive Reactions at the EIC
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Overall detector requirements:
• Large rapidity (-4 < h < 4) coverage; 

and far beyond in far-forward/far-
backward detector regions
• Rapidity is related to the polar 

angle → 0 < h < 4 equates to 
2.1° < 𝜃 < 90°

Far-forward here means 𝜽 < 2.1∘ 

(~37 mrad)

𝜃

Proton/nucleus beam

Scattered (detected) particles

Electron beam

Scattered (detected) electron

𝜽 < 2.1∘ 

Accessing Exclusive Reactions at the EIC



hadronic calorimeters e/m calorimeters          

ToF, DIRC,  RICH detectorsMAPS tracker MPG trackers

solenoid coils

5

Overall detector requirements:
• Large rapidity (-4 < h < 4) coverage; 

and far beyond in far-forward/far-
backward detector regions
• Rapidity is related to the polar 

angle → 0 < h < 4 equates to 
2.1° < 𝜃 < 90°

Need detectors here!!

𝜃

Proton/nucleus beam

Scattered (detected) particles

Electron beam

Scattered (detected) electron

𝜽 < 2.1∘ 

Accessing Exclusive Reactions at the EIC
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and the full interaction region!



e+p DVCS

J/Ψ

e+d exclusive J/Psi with p/n 
tagging
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spectator tagging in light 
nuclei

Quasi-elastic electron 
scattering

u-channel backward 
exclusive electroproduction

…and MANY more!

(some) Exclusive Processes at the EIC 

Sullivan process
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Quasi-elastic electron 
scattering

u-channel backward 
exclusive electroproduction

…and MANY more!

(some) Exclusive Physics at the EIC 

Saturation
Proton spin: orbital 

angular m
omentum; 

imaging Short-R
ange 

Correlations Free neutron 

structure, EMC 

effect, etc.

Short-R
ange 

Correlations

[1] Z. Tu, A. Jentsch, et al., Physics Letters B, (2020) 
[2] I. Friscic, D. Nguyen, J. R. Pybus, A. Jentsch, et al., 
Phys. Lett. B, Volume 823, 136726 (2021)
[3] W. Chang, E.C. Aschenauer, M. D. Baker, A. Jentsch, 
J.H. Lee, Z. Tu, Z. Yin, and L.Zheng, Phys. Rev. D 104, 
114030 (2021)
[4] A. Jentsch, Z. Tu, and C. Weiss, Phys. Rev. C 104, 
065205, (2021) (Editor’s Suggestion) Backward-angle 

colinear factorization𝜋/K form factors 

and structure 

functions
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Quasi-elastic electron 
scattering

u-channel backward 
exclusive electroproduction

(some) Exclusive Physics at the EIC 

Saturation
Proton spin: orbital 

angular m
omentum; 

imaging Short-R
ange 

Correlations Free neutron 

structure, EMC 

effect, etc.

Short-R
ange 

Correlations

[1] Z. Tu, A. Jentsch, et al., Physics Letters B, (2020) 
[2] I. Friscic, D. Nguyen, J. R. Pybus, A. Jentsch, et al., 
Phys. Lett. B, Volume 823, 136726 (2021)
[3] W. Chang, E.C. Aschenauer, M. D. Baker, A. Jentsch, 
J.H. Lee, Z. Tu, Z. Yin, and L.Zheng, Phys. Rev. D 104, 
114030 (2021)
[4] A. Jentsch, Z. Tu, and C. Weiss, Phys. Rev. C 104, 
065205, (2021) (Editor’s Suggestion) Backward-angle 

colinear factorization𝜋/K form factors 

and structure 

functions

ØPhysics channels require tagging of charged hadrons (protons, pions) 
or neutral particles (neutrons, photons) at very-forward rapidities 
(𝜼 > 4.5).

ØDifferent final states → tailored detector subsystems.
ØVarious beams and energies (h: 41, 100-275 GeV, e: 5-18 GeV; e+p, 

e+d, e+Au, etc.).
ØPlacing and operation of far-forward detectors challenging due to 

integration with accelerator.
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B1apf

B2apf

B0pf combined function magnet

Focusing quadrupoles

The        Far-Forward Detectors
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B1apf

B2apf

B0pf combined function magnet

ZDC

RP

OMD

B0 detector

The        Far-Forward Detectors

Detector Acceptance

Zero-Degree Calorimeter (ZDC) 𝜽 < 5.5 mrad (𝜂 > 6)

Roman Pots (2 stations) 0.0* < 𝜽 < 5.0 mrad (𝜂 > 6)

Off-Momentum Detectors (2 
stations) 0.0 < 𝜽 < 5.0 mrad (𝜂 > 6)

B0 Detector 5.5 < 𝜽 < 20.0 mrad  (4.6 < 𝜂 < 5.9)



Physics focus: Deuterons 
and Tagged DIS



Deuteron tagged DIS as a tool at the EIC
• Tagged DIS measurements on light nuclei → 

”tag” (generally) far-forward particles in final 
state for useful kinematic information!

• Provides more information than inclusive cross 
sections!

• Lots of topics!
• Short-range correlations.
• Gluon distributions in nuclei.
• Free neutron structure functions.
• Nuclear modifications of nucleons in light nuclei.

• EMC effect, anti-shadowing, etc.

“spectator”

“spectators”

“active/struck nucleon”

“active/struck nucleon”

Deuteron

Helium-3
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Tagged DIS with deuterons
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“spectator”

“active/struck nucleon”

Deuteron

• Spectator kinematics à determines nuclear 
configuration.
Ø Loosely bound configuration – enables extraction of 

free nucleon structure via pole extrapolation.
ØConfiguration with strongly-interacting nucleons – 

opens up study of nuclear modifications.
ØDifferential study of transition region where nuclear 

effects manifest!

Tagged DIS on the deuteron enables study of free and 
modified nuclear structure in a single nucleus!
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Full Detector Simulations – Tagged Spectators

ZDC

RP

OMD

B0 detector

Tagged deuteron spectators
• Neutrons: reconstructed in ZDC (𝜃 < 5 mrad 

acceptance).
• Protons: reconstructed in B0 tracker (6 < 𝜃 < 20 

mrad) and off-momentum detectors (𝜃 < 5 mrad).



Deuterons: Gluons and 
Short-Range Correlations



Monte Carlo for all e+d studies presented here
• Use BeAGLE to simulate the hard 

e + (active) nucleon scattering 
and primary process (e.g. J/𝜓 
production, DIS, etc.)

• For heavy A: DPMJET and FLUKA
• For deuteron: Spectator 

momentum spectra calculated via 
deuteron spectral function, using 
parametrization of Ciofi and Simula.

• C. Ciofi degli Atti and S. Simula, 
Phys. Rev. C 53, 1689 (1996)

• BeAGLE MC samples passed 
through full detector simulations, 
including beam effects to study 
prospects for future analysis!
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Wan Chang, Elke-Caroline Aschenauer, Mark D. Baker, Alexander Jentsch, 
Jeong-Hun Lee, Zhoudunming Tu, Zhongbao Yin, and Liang Zheng
Phys. Rev. D 106, 012007 (2022)
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γ*
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J/ψ

t=(p'-p)2

t'=(n'-d)2-Mp

Z. Tu, A. Jentsch et al., Phys. Lett. B, 811 (2020) Short-Range Correlations in Deuterons

Process: Exclusvie J/𝜓 production in e+d collisions.
Generator: BeAGLE

• J/𝜓 produced at mid-rapidity.
• Sensitive to gluons!

• Tagging active and spectator nucleons allow for 
experimental control of nuclear configuration → 
study transition into SRC region (e.g. where 
nuclear effects become larger).

• Tagging both nucleons allows for full 
reconstruction of momentum transfer!



18x110GeV
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• MC Gen.
• OMD
• B0

“active” protons “active” protons

Z. Tu, A. Jentsch et al., Phys. Lett. B, 811 (2020) Short-Range Correlations in Deuterons
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Neutron “spectator” case.
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• MC Gen.
• OMD
• B0

“active” protons “active” protons

Z. Tu, A. Jentsch et al., Phys. Lett. B, 811 (2020) Short-Range Correlations in Deuterons
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Neutron “spectator” case.

Off-momentum 
protons lost in 
quadrupole magnets.

Protons lost in transition 
between very far-
forward detectors and 
B0 spectrometer.
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OMD
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Ø Spectator information is the “dial” for the SRC region.
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• MC Gen.
• OMD
• B0

“active” protons “active” protons

Z. Tu, A. Jentsch et al., Phys. Lett. B, 811 (2020) Short-Range Correlations in Deuterons
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Deuterons: Free Neutron 
Structure



• Protons well-studied at HERA -> So…why the neutron?
• Flavor separation, baseline for studies of nuclear modifications.

Neutron Structure

24



• Protons well-studied at HERA -> So…why the neutron?
• Flavor separation, baseline for studies of nuclear modifications.

• What makes the free neutron structure hard to measure?
• Can only access neutrons in a nucleus. 
• Includes nuclear binding effects, Fermi motion, etc.

Neutron Structure
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• Two options: 
1. Inclusive measurements → Average over all nuclear configurations, use theory 

input to correct for nuclear binding effects.

Neutron Structure
• Protons well-studied at HERA -> So…why the neutron?

• Flavor separation, baseline for studies of nuclear modifications.
• What makes the free neutron structure hard to measure?

• Can only access neutrons in a nucleus. 
• Includes nuclear binding effects, Fermi motion, etc.
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• Two options: 
1. Inclusive measurements → Average over all nuclear configurations, use theory 

input to correct for nuclear binding effects.
2. Tagged measurements → Select nuclear configuration via spectator kinematics, 

allows for differential study.
• Spectator kinematics provide a knob to dial in different regions of interest for study (i.e. high pT 

→ SRC physics; very low pT ~ 0 GeV/c yields access to on-shell extrapolation).
• On-shell extrapolation enables access to free nucleon structure.

• M. Sargsian, M. Strikman PLB 639 (iss. 3-4) 223231 (2006)

Neutron Structure
• Protons well-studied at HERA -> So…why the neutron?

• Flavor separation, baseline for studies of nuclear modifications.
• What makes the free neutron structure hard to measure?

• Can only access neutrons in a nucleus. 
• Includes nuclear binding effects, Fermi motion, etc.
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Neutron Structure
• Previous fixed target experiments with tagging have measured the neutron 

F2 at high-x.
• CLAS - Phys. Rev. Lett. 108, 199902 (2012)
• CLAS + BONUS - Phys. Rev. C 89, 045206 (2014)

• measurement had a lower pT cutoff ~ 70 MeV/c. 

• Future JLAB 12 GeV studies planned.
• ALERT - https://arxiv.org/abs/1708.00891 
• CLAS - https://www.jlab.org/exp_prog/proposals/10/PR12-06-113-pac36.pdf

• Tagged DIS @ the EIC:
• In a collider, can tag spectators down to pT ~ 0 MeV/c → Enables extraction of free 

neutron structure function via pole extrapolation.
• Can extend tagged DIS measurement to 𝑥 ≲ 0.1.

28



Tagged Deuteron Cross Section

𝑑𝜎 = 𝐹𝑙𝑢𝑥(𝑥, 𝑄$)×	𝜎%&','×
')
$
𝑑𝑄$ '*"#
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 𝑑𝜙0
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2𝑝!#

𝑝$#
=
2(𝐸! + 𝑝%,!)

𝑀$

𝛼!: light-cone momentum fraction

𝑆$: deuteron spectral function pole

Total cross section
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• Measure the cross-section differential on the spectator kinematics.
• Spectator kinematics provide control knob on the nuclear configuration.

• Solve for the deuteron reduced cross section.

𝑑𝜎 = 𝐹𝑙𝑢𝑥(𝑥, 𝑄$)×	𝜎%&','×
')
$
𝑑𝑄$ '*"#
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𝑝$#
=
2(𝐸! + 𝑝%,!)

𝑀$

𝛼!: light-cone momentum fraction

𝑆$: deuteron spectral function pole

Total cross section
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• Measure the cross-section differential on the spectator kinematics.
• Spectator kinematics provide control knob on the nuclear configuration.

• Solve for the deuteron reduced cross section.
• Deuteron reduced cross section related to the struck nucleon reduced cross section via the 

deuteron spectral function.

𝑑𝜎 = 𝐹𝑙𝑢𝑥(𝑥, 𝑄$)×	𝜎%&','×
')
$
𝑑𝑄$ '*"#

$+
2 2𝜋 , -. '/$

/$

'0$%
&

$
 𝑑𝜙0

spectator nucleon (𝑝!" , 𝛼!) 

𝛼! ≡
2𝑝!#

𝑝$#
=
2(𝐸! + 𝑝%,!)

𝑀$

𝛼!: light-cone momentum fraction

𝑆$: deuteron spectral function pole

𝜎123,3 𝑥, 𝑄4; 	𝑝56, 𝛼5 	= 2 2𝜋 7 ×𝑆3(𝑝56, 𝛼5)[𝑝𝑜𝑙𝑒]×𝜎123,8(𝑥, 𝑄4)

Measurement of the deuteron reduced cross section yields access to the struck nucleon 
structure via the tagged spectator!

Total cross section

M. Strikman and C. Weiss, Phys. Rev. C 97, 035209 (2018)
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Pole Extrapolation

𝑅 = 𝑟𝑒𝑠𝑖𝑑𝑢𝑒	𝑜𝑓	𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
𝑎"' = 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛	𝑜𝑓	𝑝𝑜𝑙𝑒

• Divide by deuteron spectral function (nucleon pole).
• The resulting distribution is the active nucleon reduced 

cross section as a function of 𝑝01$ .

𝑆$ 𝑝!" , 𝛼! [𝑝𝑜𝑙𝑒] =
𝑅

𝑝!"' + 𝑎"'
'

𝑅 = 2𝛼!'𝑚(Γ'(2 − 𝛼!)

𝑎"' = 𝑚(
' − 𝛼!(2 − 𝛼!)

𝑀$
'

4

𝜎)*$,+ 𝑥, 𝑄' =
𝜎)*$,$ 𝑥, 𝑄'; 	𝑝!" , 𝛼!

2 2𝜋 , 𝑆$ 𝑝!" , 𝛼! [𝑝𝑜𝑙𝑒]

C. Weiss and W. Cosyn
Phys. Rev. C 102, 065204 (2020)

Deuteron spectral function
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Pole Extrapolation

𝑅 = 𝑟𝑒𝑠𝑖𝑑𝑢𝑒	𝑜𝑓	𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
𝑎"' = 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛	𝑜𝑓	𝑝𝑜𝑙𝑒

• Divide by deuteron spectral function (nucleon pole).
• The resulting distribution is the active nucleon reduced 

cross section as a function of 𝑝01$ .

• Extrapolate to 𝑝564 → −𝑎64  to extract F2 to extract 
free nucleon F2.

• Pole extrapolation selects large-size pn configurations 
where nuclear binding and FSI are absent.

𝑅 = 2𝛼!'𝑚(Γ'(2 − 𝛼!)

𝑎"' = 𝑚(
' − 𝛼!(2 − 𝛼!)

𝑀$
'

4

𝜎)*$,+ 𝑥, 𝑄' =
𝜎)*$,$ 𝑥, 𝑄'; 	𝑝!" , 𝛼!

2 2𝜋 , 𝑆$ 𝑝!" , 𝛼! [𝑝𝑜𝑙𝑒]

C. Weiss and W. Cosyn
Phys. Rev. C 102, 065204 (2020)

𝑆$ 𝑝!" , 𝛼! [𝑝𝑜𝑙𝑒] =
𝑅

𝑝!"' + 𝑎"'
' Deuteron spectral function
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A. Jentsch, Z. Tu, and C. Weiss, Phys. Rev. C 104, 
065205, (2021) (Editor’s Suggestion)

• Start with the deuteron reduced cross 
section → direct measurement!
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A. Jentsch, Z. Tu, and C. Weiss, Phys. Rev. C 104, 
065205, (2021) (Editor’s Suggestion)

• Start with the deuteron reduced cross 
section → direct measurement!

• Multiply by the inverse of the deuteron 
spectral function pole.
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A. Jentsch, Z. Tu, and C. Weiss, Phys. Rev. C 104, 
065205, (2021) (Editor’s Suggestion)

RESULT: Reduced cross section 
on the active nucleon.
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Measurement of proton F2 using this method provides ability 
to directly estimate systematics for extrapolation procedure, 
since proton F2 directly measurable in e+p scattering!



Closure Test – Pole Extrapolation vs. Integration 
(generator level)

• Pole factor removed using “event by event 
(EbE)” (method II) approach.

• Pole factor calculated and applied for 
each event (i.e. pole factor calculated for 
each exact nuclear configuration).

• Result compared to integration (method I) 
over the spectator kinematics to recover the 
original input.

• Remaining differences due to fitting and 
statistics.
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Deuterons:
 The EMC Effect 
(on-going study)



The EMC Effect
• Discovered by the European Muon 

Collaboration ~40 years ago.
• Puzzle: why the dip?

• Still an unanswered question, and 
one we hope the EIC can aid in 
answering.

• Established via measurements 
with different nuclear targets!

40

x

𝑅 S
T
U
=

𝜎 V
/𝐴

/
𝜎 W
/2

deuteron Heavier nucleus (A >2)

Nuclear effects 
modify nucleon 
structure? How?

Understanding the origin of the EMC effect and 
nuclear modifications of prime interest in 
nuclear physics!



The Deuteron – a stand-alone lab for nuclear physics
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• Off-shellness in deuterons as a probe of nuclear effects.

−𝑡X4= 𝑀Y
4 − 𝑝3 − 𝑝5

4

Virtuality/off-shellness in the deuteron

Question: can the EMC effect be controlled via the off-
shellness without altering the nuclear species?

more-likely less-likely
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Simulating the EMC Effect in BeAGLE

Use EMC effect slope measurements from data with 
different nuclear targets.
*Data from J. Seely et al. Phys. Rev. Lett. 103, 202301 (2009)

Linear fit to virtuality dependence à Minimal parametrization: 
Frankfurt and Strikman, Nuc. Phys. B 250 (1985) 
C. Ciofi et al., Phys. Rev. C 76, 055206 (2007)
And others…
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Simulating the EMC Effect in BeAGLE

Linear fit to virtuality dependence à Minimal parametrization: 
Frankfurt and Strikman, Nuc. Phys. B 250 (1985) 
C. Ciofi et al., Phys. Rev. C 76, 055206 (2007)
And others…
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Simulating the EMC Effect in BeAGLE

Result à EMC Weight in BeaGLE
• Weight factor simulates the EMC effect 

from the virtuality in the deuteron. 
• Applied event-by-event to compare 

with and without weight à enables 
study of sensitivity to EMC effect in 
various observables.
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The EMC Effect @ the EIC

𝜎? 𝛼@, 𝑝A,@, 𝑥B = 0.5
𝜎? 𝛼@, 𝑝A,@, 𝑥B = 0.2

ØQuantity allows direct comparison of 
cross section with and without EMC 
weight (x ~ 0.2 chosen to avoid anti-
shadowing region).

• Approach:
• Measure deuteron reduced cross-

section 𝜎", with and without the off-
shell effects included. 

• No FSI included.
• Ratio of 𝜎"	inside and outside the 

EMC region (e.g. x ~ 0.5 and x ~ 0.2)
• Establish required integrated 

luminosity.
• Challenging measurement → high-x + low 

probability nuclear configuration + lower 
beam energies.

• Neutron spectator not possible in 
5x41 GeV/n due to detector 
acceptance.



• Approach:
• Measure deuteron reduced cross-

section 𝜎", with and without the off-
shell effects included. 

• No FSI included.
• Ratio of 𝜎"	inside and outside the 

EMC region (e.g. x ~ 0.5 and x ~ 0.2)
• Establish required integrated 

luminosity.
• Challenging measurement → high-x + low 

probability nuclear configuration + lower 
beam energies.

• Neutron spectator not possible in 
5x41 GeV/n due to aperture limits 
for detector acceptance.
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The EMC Effect @ the EIC
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5x41 GeV/n Integrated Luminosity ~25 fb-1
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• EIC versatility à different beam energy configurations!
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The EMC Effect @ the EIC 5x110 GeV/n Integrated Luminosity ~16 fb-1

• Higher energy configuration (5x110 GeV/n).
• More favorable detector acceptance à study of proton and neutron spectators with same beam configuration.
• Measurement of same observable with different beam energies/spectator reconstruction enables better 

understanding of experimental systematics.
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• EIC kinematic coverage enables broad, differential study of 
effects.

• Spectator kinematic coverage à varied deuteron nuclear configurations.
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Different nuclear configurations

Integrate cross section 
over 𝑝",!'  in each 𝛼 bin. 
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Study of FSI and comparisons in-progress (see backup).
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Different nuclear configurations

Integrate cross section 
over 𝑝",!'  in each 𝛼 bin. 
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Summary and Takeaways

• Far-forward physics characterized by exclusive + diffractive final states.
• Lots to unpack! – proton spin, neutron structure, saturation, partonic imaging, 

meson structure, etc.
• There is lots of interest in the EIC community for exclusive physics à I 

have only shown a few studies here.
• Exciting time to get involved!!

Email me if you have any questions: ajentsch@bnl.gov
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Interested the EIC far-forward physics?? Join the ePIC 
Collaboration and get involved! 

Wiki: https://wiki.bnl.gov/eic-project-detector/index.php?title=Collaboration 
Policies: https://wiki.bnl.gov/EPIC/index.php?title=Policies 

https://wiki.bnl.gov/eic-project-detector/index.php?title=Collaboration
https://wiki.bnl.gov/EPIC/index.php?title=Policies


Thank you!
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Julep Lilu

They (mostly) get 
along.

She’s in a 
death metal 
band.



Backup
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Where do the particles go past the B0?
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B1apf

B2apf

ZDC



Where do the particles go past the B0?
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B1apf

RP

B2apf

ZDC

Protons with ~35-50% momentum 

w.r.t. steering magnets.

Protons with ~50-

60% momentum 

w.r.t. s
teering 

magnets.

OMD

• Off-momentum protons → smaller magnetic 
rigidity → greater bending in dipole fields.

• Important for any measurement with nuclear 
breakup!



Where do the particles go past the B0?
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B1apf

RP

B2apf

ZDC

Protons with ~35-50% momentum 

w.r.t. steering magnets.

Protons with ~50-

60% momentum 

w.r.t. s
teering 

magnets.

Protons with > 60% of 

the beam momentum 

can be reconstructed by 

the Roman pots.

OMD

• Off-momentum protons → smaller magnetic 
rigidity → greater bending in dipole fields.

• Important for any measurement with nuclear 
breakup!

RP



• Off-momentum protons → smaller magnetic 
rigidity → greater bending in dipole fields.

• Important for any measurement with nuclear 
breakup!

Where do the particles go past the B0?
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B1apf

RP

B2apf

ZDC

Protons with ~35-50% momentum 

w.r.t. steering magnets.

Protons with ~50-

60% momentum 

w.r.t. s
teering 

magnets.

ZDC

neutrons and photons ZDC

OMD

RP

Protons with > 60% of 

the beam momentum 

can be reconstructed by 

the Roman pots.



Roman Pots and OMD
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Full GEANT4 simulation.Protons
E = 275 GeV
0 < 𝜽 < 5 mrad

Proton 
trajectories

Protons
123.75 < E < 151.25 GeV
(45% < xL < 55%)
0 < 𝜽 < 5 mrad (kind of)

RP

OMD

B0

ZDC

RP

OMD

ZDC

High-angle (𝜃 > 2mrad) 
particles lost in aperture.



• Protons well-studied at HERA -> So…why the neutron?
• Flavor separation, baseline for studies of nuclear modifications.

Neutron Structure

Reduced cross section

“Flux factor” Differential 
cross section

Structure functions
PROTONS

Some useful HERA references for measurements on proton

• F. Aaron et al. (H1 Collaboration), The European Physical Journal C 
volume 63, Article number: 625 (2009)

• V. Andreev et al. (H1 Collaboration), Eur.Phys.J.C 74 (2014) 4, 2814
• H. Abramowicz et al. (H1 and ZEUS Collaborations) The European 

Physical Journal C volume 75, Article number: 580 (2015)
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Free Nucleon Structure
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• Similar kinds of high-precision results 
achievable as was done for proton F2 at HERA!
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A. Jentsch, Z. Tu, and C. Weiss, Phys. Rev. C 104, 
065205, (2021) (Editor’s Suggestion)
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Open circles: “inclusive” measurement.
Stars: pole extrapolation procedure.

Differences driven by evaluation of pole 
(average in bin, vs. event-by-event).



Final-State Interaction: Physical Picture
Space-time picture in deuteron rest-frame

• 𝜈 ≫ hadronic scale: large phase space for 
hadron production.

• “Fast” hadrons 𝐸" = 𝒪 𝜈  à current 
fragmentation region: Formed outside the 
nucleus, interaction with the spectator 
suppressed.

• “Slow” hadrons 𝐸" = 𝒪 1	𝐺𝑒𝑉  à target 
fragmentation region: Formed inside the 
nucleus, interact with hadronic cross sections.
ØSource of FSI in tagged DIS!

Implementation
• Distributions of slow hadrons in DIS on nucleon: 

kinematic dependence, empirical distributions
• Hadron-nucleon scattering amplitudes: Re/Im
• Calculation of rescattering process: phase space 

integral 
• Study kinematic dependences: 𝑥, 𝛼#, 𝑝#$
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Strikman, Weiss PRC97 (2018) 035209Momentum distribution of slow hadrons in nucleon 

rest frame: Cone in virtual photon direction.



FSI: Kinematic Dependence

• FSI Ratio 𝑆C FSI /𝑆C[IA]
• 𝑝@A  dependence: weak up to ~0.3 GeV, strong 

rise above
• 𝛼@ dependence: FSI increases with 𝛼@ − 1 at 

small 𝑝@A
• 𝑥 dependence: FSI decreases with increasing 𝑥 

due to depletion of slow hadrons

61



FSI: pT-integrated cross-section

• 𝑝!"  - integrated cross section:

• Here: Plotted as a function of 
𝑥# = 𝑥/(2 − 𝛼!)

• Simple dependence of 𝛼! and 𝑥#.
• FSI effect typically 10-20%
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𝜎 = [
!'([./0]

𝑑'𝑝!"𝑆$(𝛼!, 𝑝!")𝜎+(𝑥+)



FSI: Initial state vs. final-state modification

• Here: 𝑝!"  - integrated cross section, 
𝑝!" 𝑚𝑎𝑥 = 0.4 GeV

• EMC Effect: virtuality-dependent model

• Compare EMC and FSI
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𝜎8[𝑏𝑜𝑢𝑛𝑑]
𝜎8[𝑓𝑟𝑒𝑒]

= 1 +
𝑡
𝑡
𝑓STU 𝑥8

𝑡 = 𝑡(𝛼5,𝑝56)

à Currently in-progress!



B0 Detectors
Ø Detector subsystem embedded in an accelerator 

magnet.

64

This is the opening where the 
detector planes will be inserted

Credit to 
Ron Lassiter

Space for detectors 

Hadrons

Electrons



B0 Detectors
Ø Detector subsystem embedded in an accelerator 

magnet.

Space for detectors 
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Hadrons

Electrons
Karim Hamdi and Ron Lassiter



Tracking planes

Hadron beam pipe

Electron quad 
(Q0EF)

ePIC DD4HEP Simulation

Ø Technology choices:
Ø Tracking: 4 layers AC-LGADs
Ø PbWO4 or LYSO EMCAL.
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B0 Tracking and EMCAL Detectors
PbWO4/LYSO 
EMCAL (behind 
tracker)

Ø Status
ü Used to reconstruct charged particles and photons.

ü Acceptance: 5.5 < 𝜃 < 20.0 mrad on one side, up to 
13mrad on the other.

ü Focus now is on readout, new tracking software, and 
engineering support structure.

ü Stand-alone simulations have demonstrated tracking 
resolution. 

• https://indico.bnl.gov/event/17905/
• https://indico.bnl.gov/event/17622/

https://indico.bnl.gov/event/17905/
https://indico.bnl.gov/event/17622/
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B    Detectors
Design for two detectors is converging:

Si Tracker:
● 4 Layers of AC-LGAD à provide 

~20um spatial resolution (with 
charge sharing) and 20-40ps timing 
resolution.

● Technology overlap w/ Roman pots

EM Calorimeter:
● 135 2x2x7*cm3 LYSO crystals
● Good timing and position resolution
● Technology overlap with ZDC

* ZDC wants slightly longer crystals, ideally, we will use the same length in both detectors

CAD Look credit: Jonathan Smith

135 scintillating 
crystals

Readout & 
cable space

Rails for 
installation 
& support

4 Tracking layers
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B    Detectors - Simulation Studies

Si Tracker:
● Resolution plots made by Alex Jentsch with standalone setup (more here and here)
● ACTS Tracking (a long-standing problem) was recently solved and is implemented in 

the simulation (see recent Sakib R slides), we expect more results soon

EM Calorimeter:
● Caveat - studies performed with PbWO4 crystals, LYSO crystals still to be 

implemented in the simulation.
● General performance studies by Michael Pitt (more in FF weekly meeting)
● Sensitivity to soft photons (see Eden Mautner talk at the EICUG EC workshop 

early this week)

https://indico.bnl.gov/event/17905/
https://indico.bnl.gov/event/17622/
https://indico.bnl.gov/event/19941/contributions/78066/attachments/48241/81935/ACTS%20Tracking%20With%20B0%20-%20Update%201.pdf
https://indico.bnl.gov/event/18001
https://indico.jlab.org/event/696/contributions/13196/


B    Tracking - Performance
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● 27cm spacing with fully AC-LGAD 
system and 5% radiation length 
may be the most-realistic option.

● Reduced spacing (from 
30cm) to make room for 
EMCAL.

● Needs to be looked at with 
proper field map and layout.

● Resolution impact on physics still 
being evaluated.

Note: momentum resolution (dp/p)  is 
~2-4%, depending on configuration.0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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 + HD; 80 < p < 100 GeV/c
0

27cm spacing + TimePix (3 layers, 16um) + ACLGAD (1 layer, 20um) + 1%X

 + HD; 80 < p < 100 GeV/c
0

27cm spacing + full ACLGAD 20um res. + 1%X

 + HD; 80 < p < 100 GeV/c
0

27cm spacing + full ACLGAD 20um res. + 5%X

 + HD; 80 < p < 100 GeV/c
0

27cm spacing + ITS3 (3 layers, 6um) + ACLGAD (1 layer, 20um) + 1%X

 + HD; 80 < p < 100 GeV/c
0

27cm spacing + faux field map + full ACLGAD 20um res. + 5%X

 + HD; 30 < p < 41 GeV/c
0

27cm spacing + faux field map + full ACLGAD 20um res. + 5%X
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B    EMCal - Performance
● Acceptance 5.5 < 𝜃 < 23 mrad 
● Very low material budget in 5 < η < 5.5

Particles within 5.5 < 𝜃 < 15 mrad don’t cross the beampipe

Photons:
➢ High acceptance in a broad energy 

range (> 100s MeV), including ~MeV 
de-excitation photons

➢ Energy resolution of 6-7%
➢ Position resolution of ~3 mm

Neutrons:
➢ 50% detection efficiency (λ is almost 1)



Roman Pots and OMD 
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ZDCZDC
RP

OMD



Roman Pots and OMD 
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ZDCZDC

RP

CAD Look credit: Ron Lassiter 



Roman Pots and OMD 

73

B1apf

ZDCZDC

RP

CAD Look credit: Ron Lassiter 



Roman Pots and OMD 
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B1apf

ZDCZDC

RP

CAD Look credit: Ron Lassiter 

● Technology
● “Potless” design concept with thin RF foils surrounding detector 

components.



Roman Pots and OMD 
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B1apf

B2apf

ZDCZDC

CAD Look credit: Ron Lassiter 

● Technology
● “Potless” design concept with thin RF foils surrounding detector 

components.
● 500um, pixilated AC-LGAD sensor, with 30-40ps timing resolution 

à High-precision space and time information!
● Similar concept for the OMD, just different active area and shape.

25.6 cm

12
.8

 c
m



CAD Look credit: Ron Lassiter 

Roman Pots and OMD 
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B1apf

B2apf

ZDCZDC

OMDMore engineering work is currently underway to optimize the layout, support structure, cooling, and 
movement systems for inserting the detectors into the beamline.

● Technology
● “Potless” design concept with thin RF foils surrounding detector 

components.
● 500um, pixilated AC-LGAD sensor, with 30-40ps timing resolution 

à High-precision space and time information!
● Similar concept for the OMD, just different active area and shape.
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Roman “Pots” @ the EIC

DD4HEP 
Simulation

25.6 cm

12
.8

 c
m

𝜎0,2 = 𝛽(𝑧)0,2𝜖0,2 + 𝐷0,2
∆𝑝
𝑝

'

𝜎 𝑧  is the Gaussian width of the beam, 𝛽 𝑧  is the RMS 
transverse beam size, 𝜀 is the beam emittance, and D is the 
momentum dispersion.

Ø Low-pT cutoff determined by beam optics.
Ø The safe distance is ~10𝜎 from the beam center.
Ø 1𝜎	~ 1mm

Ø These optics choices change with energy, but can also be changed within a 
single energy to maximize either acceptance at the RP, or the luminosity.
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~20 cm

High DivergenceHigh Divergence

275 GeV DVCS Proton Acceptance
Digression: Machine Optics (IP6)

High Divergence
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~20 cm

High DivergenceHigh Divergence

High Acceptance

275 GeV DVCS Proton Acceptance

High Acceptance

Digression: Machine Optics (IP6)

High Divergence



80

~20 cm

High DivergenceHigh Divergence

High Acceptance

275 GeV DVCS Proton Acceptance

High Acceptance

Using the two configurations, we 
are able to measure the low-t 
region (with better acceptance) and 
high-t tail (with higher luminosity).

HDHA

Digression: Machine Optics (IP6)



~25 cm

High Divergence High Divergence

Need both detector systems 
together here!

100 GeV DVCS Proton Acceptance
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Digression: Machine Optics (IP6)



~25 cm

High Divergence

High Acceptance
High Acceptance

High Divergence

Need both detector systems 
together here!

100 GeV DVCS Proton Acceptance
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Digression: Machine Optics (IP6)



Summary of Detector Performance
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• All beam effects included!
• Angular divergence.
• Crossing angle.
• Crab rotation/vertex smearing.

Beam effects the dominant 
source of momentum 
smearing!



• Need a calorimeter which can accurately 
reconstruct neutral particles

• Neutrons and photons react differently in 
materials – need both an EMCAL and an HCAL!

Zero-Degree Calorimeter
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• Need a calorimeter which can accurately 
reconstruct neutral particles

• Neutrons and photons react differently in 
materials – need both an EMCAL and an HCAL!

Zero-Degree Calorimeter
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ZDC - What’s New
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ZDCZDC● 1st Silicon & crystal calorimeter (PbWO4 or LYSO):
○ Smaller lateral dimension (x, y) = (56, 54) cm.

• Pb-Scintillator (+ fused silica)
• Towers of 10cm x 10cm x 48cm, 

each module 60cm x 60cm x 48cm
• 3 modules

Readout setup 
from top & bottom

Overall length within 2m limit

• W/Silicon Imaging EMCAL
• Transverse size (x,y) = 

(56, 54) cm
• 12 layers (~24𝜒b)



ZDC - Performance
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● Energy resolution in the new design 
acceptable → Optimization, test of 
different ideas within the size limit. 

● Next steps:
○ Implementation of reconstruction 
○ Position resolution & shower 

development study ongoing for the 
imaging part of HCAL

YR Requirement

Current Study

Previous design

Neutron Energy Resolution

Current:               34%
6
+ 4.1%

Requirement:       78%
6
+ 5%

Previous Study: 3,%
6
+ 2.1%



Short-Range Correlations
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“The nucleus can often be approximated as an independent collection of protons and neutrons 
confined in a volume, but for short periods of time, the nucleons in the nucleus can strongly overlap. 
This quantum mechanical overlapping, known as a nucleon-nucleon short-range correlation, is a 
manifestation of the nuclear strong force, which produces not only the long-range attraction that holds 
matter together, but also the short-range repulsion that keeps it from collapsing.”

Excerpt from: https://www.jlab.org/research/nucleon_nucleon

Lots of SRC pairs!!! -> Really tough!

Use deuteron as “SRC laboratory”, 
where nucleon kinematics are 
readily accessible.



Proton “spectator” case.

89

Particular process in BeAGLE: 
incoherent diffractive J/𝜓 
production off bounded nucleons.

• MC Generated
• Accepted

Protons Protons γ*

e

e'

d p

n

p'

n'

J/ψ

t=(p'-p)2

t'=(n'-d)2-Mp

18x110GeV

Z. Tu, A. Jentsch et al., Phys. Lett. B, 811 (2020) Short-Range Correlations in Deuterons

MC generated events shown in black – “accepted” protons in red. 
Acceptance refers to particles which are actually captured by the detector.
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• Spectator kinematic variables reconstructed 
over a broad range. 

• All detector and beam effects included in 
the full GEANT simulations!

• Bin migration is observed due to 
smearing in the reconstruction. 

γ*

e

e'

d p

n

p'

n'

J/ψ

t=(p'-p)2

t'=(n'-d)2-Mp

18x110GeV

Z. Tu, A. Jentsch et al., Phys. Lett. B, 811 (2020) Short-Range Correlations in Deuterons

Proton “spectator” case.

Ø In the proton spectator case, essentially all spectators tagged up to pT ~ 600 MeV/c.
Ø Active neutrons only tagged up to 4.5 mrad → double-tagging efficiency very low.



Proton spectator case.
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Particular process in BeAGLE: 
incoherent diffractive J/psi 
production off bounded nucleons.

• MC Gen.
• OMD

Ø In the proton spectator case, essentially all spectators tagged.
Ø Active neutrons only tagged up to 4.5 mrad.

Protons Protons

Spectator kinematic variables 
reconstructed over a broad 
range. Bin migration is observed 
due to smearing in the 
reconstruction. Each plot shows 
the MC (closed circles), 
acceptance effects only (open 
circles), and full reconstruction 
(open squares).
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Z. Tu, A. Jentsch et al., Phys. Lett. B, 811 (2020) e+d Spectator Tagging



Light nuclei – Helium-3: 
Neutron Spin Structure



• Studies of neutron structure with a polarized neutron.
• More challenging final state tagging since both protons must be tagged.
• MC events generated with CLASDIS in fixed-target frame, and then 

boosted to collider frame.
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Neutron Spin Structure in He3
I. Friscic, D. Nguyen, J. R. Pybus, A. Jentsch, et al., 
Phys. Lett. B, Volume 823, 136726 (2021)
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Neutron Spin Structure in He3
I. Friscic, D. Nguyen, J. R. Pybus, A. Jentsch, et al., 
Phys. Lett. B, Volume 823, 136726 (2021)

• Spin structure probed via spin asymmetries!

Neutron Protons

• (double) Tagged DIS measurement capable of measuring 𝐴g8 directly!
• Complementary to measurements at JLAB.



• Neutron spin asymmetries can be measured from kinematics of the tagged protons.
• EIC can build upon measurements at JLAB by reducing polarization uncertainties,  

and opening a broader Q2 range for study.
• Can aid in our understanding of quark orbital angular momentum in nucleons.
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Neutron Spin Structure in He3

Low-x High-x

I. Friscic, D. Nguyen, J. R. Pybus, A. Jentsch, et al., 
Phys. Lett. B, Volume 823, 136726 (2021)



Pole Extrapolation C. Weiss and W. Cosyn
Phys. Rev. C 102, 065204 (2020)
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Effects of momentum smearing on pole factor
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• Detector smearing has a drastic impact when the EbE method is used.
• If you calculate the pole factor on an EbE basis with smeared spectator kinematic values, you now 

remove the pole factor for the wrong nuclear configuration!
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Kinematic Distributions and Smearing

• Event sub-sample passed 
through full GEANT4 
simulations.

• Smearing parametrizations 
extracted for (px, py, pz, E).

• Larger overall smearing 
observed for neutrons, 
consistent with previous study.

• Anomalous proton smearing at 
high pT and p > 120 GeV/c and 
p < 100 GeV/c due to linear 
transfer matrix assumption.

• Will be fixed in the future for TDR 
studies.

proton spectator

neutron spectator neutron spectator

proton spectator
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