# Diffractive, Elastic and Total Cross Section Physics at ATLAS





### Lydia Beresford

Heraeus seminar, 25th October 2023



## Soft QCD laboratory



Run: 267638 Event: 242090708 2015-06-14 01:01:14 CEST  $Z \rightarrow \mu \mu$ 

T

# Soft QCD is everywhere

- Key area of SM where knowledge of fundamental processes is limited
- Theoretically:
  - Beyond pQCD regime
  - Employ phenomenological models with tunable parameters
  - Measurements are vital
- Crucial input for other LHC searches
   + measurements & beyond!

**Today: Diffractive, elastic & total x-section** 

See also: PDG sQCD review & 50 years of QCD



## **LHC Strong interactions**

#### $\mathbf{P}$ = Pomeron



## **LHC Strong interactions**

#### $\mathbf{P}$ = Pomeron



## **Elastic scattering**



## **Elastic scattering**



### ALFA



Active during dedicated low- $\mu$  high  $\beta^*$  runs

## **Going forward**



Diagram by Jesse Liu

## **ALFA detectors**



Detectors within millimetres of beam  $\rightarrow$  Can measure smaller t Position protons hit ALFA depends on kinematics & LHC magnets

## **ALFA detectors**



Challenge: Need good understanding of detector alignment & performance

### Fundamental LHC process: Proton-proton scattering

#### **Colour singlet exchange**





Proton t determined from proton position measured by ALFA



**Probe smaller t via:** Less focused beams (higher  $\beta^*$ ), lower  $\sqrt{s}$ 

### **Coulomb-Nuclear-Interference (CNI) region**





**Dataset:**  $\sqrt{s} = 13$  TeV with  $\beta^* = 2.5$  km

Lydia Beresford

**Selection:** data quality, trigger, reco, acceptance + exploit correlations e.g.



15

## **Background estimation**

Small bkg fraction ~ 0.75%

### Two sources:

- Central diffraction (MC simulation)
- Accidental coincidences halo + halo & halo + single diffraction (data-driven)

Normalise in control regions



### Many aspects of analysis utilise data based approaches:

Alignment, reconstruction efficiency, optics

## **Elastic differential cross-section**

Corrected for experimental effects: acceptance, efficiencies etc



Extract physics parameters from profile fit

### **Elastic fit function:**

$$\frac{\mathrm{d}\sigma}{\mathrm{d}t} = \frac{1}{16\pi} \left| f_{\mathrm{N}}(t) + f_{\mathrm{C}}(t) \mathrm{e}^{\mathrm{i}\alpha\phi(t)} \right|^2$$

$$f_{\rm C}(t) = -8\pi\alpha\hbar c \frac{G^2(t)}{|t|}$$

$$f_{\rm N}(t) = (\rho + i) \frac{\sigma_{\rm tot}}{\hbar c} e^{\frac{-B|t| - Ct^2 - D|t|^3}{2}}$$

$$\rho = \left. \frac{\operatorname{Re}[f_{\rm el}(t)]}{\operatorname{Im}[f_{\rm el}(t)]} \right|_{t \to 0}$$

## Systematic uncertainties

Fit takes into account: statistical & systematic uncertainties & correlations Main uncertainties: Alignment, luminosity, reconstruction efficiency Dedicated luminosity analysis performed for these ALFA runs:

 $L_{\text{int}} = 339.9 \pm 0.1 \text{ (stat.)} \pm 7.3 \text{ (syst.)} \ \mu \text{b}^{-1}$ 



### $\rho$ measurement

COMPETE = a standard evolution model based on semi-empirical fits

```
\rho = 0.0978 \pm 0.0085 (exp.) \pm 0.0064 (th.)
```



#### $\rho$ probes CNI region, low value in tension with COMPETE

ightarrow Could be explained by Odderon or a slowdown in rise of  $\sigma_{
m tot}$  at high  $\sqrt{s}$  ,

### **Total hadronic cross-section**



2.2  $\sigma$  tension with TOTEM  $\sigma_{tot}$  result, similar trend seen at 7 & 8 TeV

## **Nuclear slope**

### $d\sigma/dt$ can't be described by a simple exponent

For comparison measure *B*-slope in dedicated fit at small |t| (slope ~ const.) *B*-slope in agreement with totem



ref = reference exponential function

 $B = 21.14 \pm 0.13 \text{ GeV}^{-1}$ 

## **Derived quantity**

#### **Total inelastic cross-section agrees with ATLAS MBTS measurements**



 $\sigma_{\text{inel}} = 77.41 \pm 1.07 \text{ (exp.)} \pm 0.18 \text{ (th.) mb}$ 

## **Derived quantity**

Some uncertainties can cancel in the ratio

#### **Ratio of elastic to total cross-section in tension with TOTEM results**



## **Diffractive processes**



## **Diffractive processes**

#### $\mathbf{P}$ = Pomeron



#### Pomeron exchange with dissociation into diffractive system

Large (~10% of total LHC cross-section) but poorly constrained

### Input for MC generators, improve:

- Pile-up modelling
- Modelling of cosmic-ray air showers

## **Measuring diffractive events**

**Single diffractive (SD)** 



### **Diffractive system X:**

- Rapidity gaps using ATLAS tracks or calorimeters
- Low number of tracks in ATLAS

 $\mathbf{P} = \text{Pomeron}$ 

### Measuring diffractive events

#### $\mathbf{P}$ = Pomeron

slac-pub-6463

### **Rapidity gaps** Р О SD ф P DD P Φ °P P CD ф P P O

η

2-94 7627A1

## **Rapidity gaps**



Larger of two empty  $\eta$  regions wrt edge of detector acceptance

Tracks only wrt  $\eta = \pm$  2.5, tracks & calorimeter clusters wrt  $\eta = \pm$  4.9

## **MBTS (Min Bias Trigger Scintillators)**

Select events with as little bias as possible



#### In forward region 2.08 $\leq |\eta| < 3.75$ , in front of end-cap calorimeters

## Single diffractive

EPJC 72 (2012)1926



**Possible** to separate diffractive and non-diffractive **Not possible** to fully separation single and double diffractive

### **Measuring diffractive events**

 $\mathbf{P}$  = Pomeron

**Single diffractive (SD)** 



Intact forward scattered protons: Measure using ALFA or AFP

### ALFA

## AFP





AFP: active in high & low-μ runs, very fast Time-Of-Flight detectors, acceptance at higher mass, horizontal insertion, good ξ resolution
 ALFA: vertical insertion, complementary acceptance to AFP, good t resolution

## **Going forward**



Diagram by Jesse Liu

### **AFP detectors**



 $\sqrt{s}$  = 8 TeV data with ALFA inserted, low pile-up  $\langle \mu \rangle$  < 0.08 & high- $\beta^*$ 



### **Tag intact proton:**

Trigger: ALFA signal + MBTS

Single proton in ALFA & one good vertex

- Suppress double diffractive •
- Can measure t dependence (& alternative  $\xi$  measurement) •



Non-diffractive and double diffractive now negligible Overlay & central diffractive are main backgrounds

## **SD Backgrounds**

**CD** estimated using simulation (& correction in CR)

**'Overlay'**: coincidence of signal in ALFA + uncorrelated signal in ALFA partially data-driven technique



Uncertainty on overlay background is one of the largest systematics

### **Results**

### Measurements vs $|t| \& \xi$ in backup

### **Differential SD hadron level cross-section after bkg subtraction**



Shape well-modelled but not overall cross-section

### **Results**

### **Inclusive SD cross-section measurement**

| Distribution                     | $\sigma_{\mathrm{SD}}^{\mathrm{fiducial}(\xi,t)}$ [mb] |
|----------------------------------|--------------------------------------------------------|
| Data                             | 1.59 ± 0.13                                            |
| Рутніа8 A2 (Schuler–Sjöstrand)   | 3.69                                                   |
| Рутніа8 A3 (Donnachie–Landshoff) | 2.52                                                   |
| Herwig7                          | 4.96                                                   |

Fiducial region: -4.0 <  $\log_{10} \xi \le -1.6$ & 0.016 <  $|t| \le 0.43 \text{ GeV}^2$ 

#### Large over-prediction by MC: $\sigma_{\text{Data}} / \sigma_{\text{Pythia8 A3}} \sim 0.6$

 $\rightarrow$  Important to measure hard-to-model processes

### **Measuring diffractive events**

### $\mathbf{P}$ = Pomeron

**Example: Single diffractive (SD)** 



#### **Diffractive system X:**

- Neutral particles can be measured using LHCf + ZDC calorimeters ( $\pi^0$ , $\gamma$ ,n)
- For hard diffraction you can also have jets not covered in this talk

## **Going forward**



Diagram by Jesse Liu

## Single diffractive with ALFA/AFP + LHCf/ZDC

### LHC forward (LHCf) + ATLAS Zero Degree Calorimeter (ZDC):

Measure forward neutral particles in 0 degree region

 $\rightarrow$  Combining both improves hadronic shower containment & neutron resolution



#### What about including forward proton detectors?

## Single diffractive with ALFA/AFP + LHCf/ZDC

### Physics potential of joint data taking with ALFA or AFP PUB-2023-024:



#### Sufficient common detector acceptance with AFP!

- → Motivated inclusion of AFP detectors during LHCf run in September 2022
- $\rightarrow$  1st data-taking with LHCf, ZDC, ATLAS + AFP detectors included

## Summary

Range of interesting elastic & diffractive measurements presented + planned

### Many special + novel techniques & detectors, close ties to performance

See the following talks/posters for more ALFA + AFP:

- Savannah Clawson
- Sergio Javier Arbiol Val
- Maciej Lewicki
- Maciej Trzebinski

### Advance our understanding of nature



### cosmic ray air shower

## Backup

## **ALFA Elastics acceptance**

Mainly depends on ALFA geometry & distance to beam



## **OD** based alignment

K.W. Janas



Figure 5: Scheme of the Overlap Detectors concept: halo particle hit fibers in upper and lower OD in the ALFA station with the same vertical position [2]. The measured positions can be used to determine the distance **d** between upper and lower MD.

## Measurement methods for $\sigma_{\rm tot}$

R Staszewski

## Luminosity-dependent Luminosity-independent (ATLAS) (TOTEM)

$$\sigma_{\text{tot}}^2 = \left. \frac{16\pi}{1+\rho^2} \frac{1}{L} \frac{\mathrm{d}N_{\text{el}}}{\mathrm{d}t} \right|_{t \to 0}$$

 $\sigma_{\text{tot}} = \frac{16\pi}{1+\rho^2} \frac{1}{N_{\text{el}} + N_{\text{inel}}} \frac{dN_{\text{el}}}{dt} \bigg|_{t \to 0}$ 

Requires a dedicated luminosity measurement

Requires correction for not measured small-mass diffraction

## **ATLAS vs TOTEM**



Differential elastic cross section comparison for ATLAS & TOTEM Data are in both cases divided by the model fit to the ATLAS data Model is fit in range in t indicated by the blue arrow Only statistical uncertainties are shown

## Luminosity for elastics measurement

### Total uncertainty: 2.15%

### Main contributions:

vdM calibration, calibration transfer, stability over time & background



Run number

## **Elastics Reco efficiency and beam optics**



Run number

Reconstruction efficiency by a tagand-probe method (data-driven)

- Reconstruction can fail because of shower development
- Efficiency in arm1 slightly higher because of material distribution

Beam optics (transport matrix elements) needed for *t*-reconstruction

- An effective optics model is tuned using correlations in ALFA variables
- small corrections are derived to the strength of the quadrupoles

07/07/2022

Hasko Stenzel

19

## **Elastics alignment**

### R Staszewski



# **Elastics uncertainties**

### Main uncertainties:

- Luminosity (for  $\sigma_{
m tot}$ )

### - Alignment & theory uncertainties (for ho)

|                    | $\sigma_{tot}[mb]$ | ρ      | $B[\text{ GeV}^{-2}]$ | $C[\text{GeV}^{-4}]$ | $D[\text{GeV}^{-6}]$ |          |
|--------------------|--------------------|--------|-----------------------|----------------------|----------------------|----------|
| Central value      | 104.68             | 0.0978 | 21.14                 | -6.7                 | 17.4                 | H Stenze |
| Statistical error  | 0.22               | 0.0043 | 0.07                  | 1.1                  | 3.8                  |          |
| Experimental error | 1.06               | 0.0073 | 0.11                  | 1.9                  | 6.8                  |          |
| Theoretical error  | 0.12               | 0.0064 | 0.01                  | 0.04                 | 0.15                 |          |
| Total error        | 1.09               | 0.0106 | 0.13                  | 2.3                  | 7.8                  |          |



Theoretical uncertainties:

- Parametrization of the strong amplitude
- Coulomb phase
- Proton form factor
- Nuclear phase
- → Important for ρ!

#### Stability:

- Time dependence
- Fit range
- Different t-reconstruction methods
- Difference between arms 11

### **Elastics theoretical predictions**

Cross section from squared amplitudes.

Coulomb amplitude

Proton form factor

Nuclear amplitude with curvature terms *C* and *D*.

**Coulomb** phase

$$f_{\rm C}(t) = -8\pi\alpha\hbar c \frac{\langle \nabla \rangle}{|t|}$$

$$G(t) = \left(\frac{\Lambda}{\Lambda + |t|}\right)^2 \frac{|t|}{\int C(t)}$$

$$f_{\rm N}(t) = (\rho + i) \frac{\sigma_{\rm tot}}{\hbar c} e^{\frac{-B|t| - Ct^2 - D|t|^3}{2}}$$

$$\phi(t) = -\left(\gamma_{\rm E} + \ln\frac{B|t|}{2} + \ln\left(1 + \frac{8}{B\Lambda}\right)\right) + \frac{4t}{\Lambda} \cdot \ln\frac{\Lambda}{4t} - \frac{2t}{\Lambda}$$

$$\frac{4\pi\alpha^2(\hbar c)^2}{\int C^4(t)} \times C^4(t)$$

 $\frac{\mathrm{d}\sigma}{\mathrm{d}t} = \frac{1}{16\pi} \left| f_{\mathrm{N}}(t) + f_{\mathrm{C}}(t) \mathrm{e}^{\mathrm{i}\alpha\phi(t)} \right|^2$ 

 $G^2(t)$ 

Full prediction

N.b.: Also several models of strong phase tested.

$$\begin{aligned} \frac{\mathrm{d}\sigma}{\mathrm{d}t} &= \frac{4\pi\alpha^2(\hbar c)^2}{|t|^2} \times G^4(t) \\ &- \sigma_{\mathrm{tot}} \times \frac{\alpha G^2(t)}{|t|} \left[ \sin\left(\alpha\phi(t)\right) + \rho\cos\left(\alpha\phi(t)\right) \right] \times \exp\frac{-B|t| - Ct^2 - D|t|^3}{2} \\ &+ \sigma_{\mathrm{tot}}^2 \frac{1 + \rho^2}{16\pi(\hbar c)^2} \times \exp\left(-B|t| - Ct^2 - D|t|^3\right) , \end{aligned}$$
Hasko Stenzel 21

Lydia Beresford

H Stenzel

## Elastics FMO & BCBM models

### **FMO (Froissaron Maximal Odderon):**

Tuned to TOTEM data, ALFA cross-section data at 7 & 8 TeV not included in the tuning

### BCBM (Block & Cahn & Bourely & Martin):

 $\sigma_{\rm tot}$  grows slightly slower than ln<sup>2</sup>s evolution assumed by COMPETE  $\rightarrow$  damped ln<sup>2</sup>s amplitude with energy dependence of form ln<sup>2</sup>s/(1+ $\alpha$ ln<sup>2</sup>s)  $\alpha$  is the damping factor (modifies high energy behaviour of  $\rho$  and  $\sigma_{\rm tot}$ ) Fair description of ALFA data for  $\alpha$ =0.0014

## Single Diffractive kinematic variables



 t – squared four-momentum transferred from the proton (related to proton transverse momentum)

R Staszewski

 $t \approx -p_T^2$ 

•  $\xi$  – momentum fraction of the proton carried by the pomeron

$$\xi = 1 - E/E_0$$
  
=  $M_X^2/s \approx \sum_i (E^i \pm p_z^i)/\sqrt{s}$ 

E – proton energy

 $E_00$  – proton initial energy

 $E^i$ ,  $p_z^i$  – energy and longitudinal momentum of particles in the dissociated state

s – centre-of-mass energy

•  $\Delta \eta$  – (pseudo)rapidity gap from the tracker edge

For SD: 
$$\Delta \eta \approx -\ln(\xi)$$

## Single Diffractive analysis MC

### R Staszewski

#### Main MC:

- PYTHIA8 A3 tune (ATL-PHYS-PUB-2016-017):
- Proton PDF = NNPDF23 LO
- Pomeron : PDF = H1 2006 Fit B; Flux: intercept: 1.06, slope: 0.25 (Donnachie-Landshoff)
- SD for unfolding
- CD, DD, ND for background subtraction
- Elastics for ALFA Reconstruction efficiency For systematics:
  - PYTHIA 8 A2 tune (ATL-PHYS-PUB-2012-003)
  - HERWIG 7.1:
    - Proton PDF = MMHT2014lo68cl
    - Pomeron : PDF = H1 2006 Fit A;
       Flux: intercept: 1.00, slope: 0.25







### 'overlay'

**Bkg estimate:** ND enriched sample (32 MBTS segments fired & tracks within 0.5  $\eta$  of both edges of ID acceptance)

- Gives t distributions
- Gives normalisation for  $\xi$  and  $\Delta\eta$



### **Central Diffraction**

**Bkg estimate:** MC + re-weight  $\xi$  distributions to match data in CR (preserving normalisation)



CR: nominal selection but with protons in two armlets & 2-10 MBTS segments fired 58

JHEP 02 (2020) 042

**Slope parameter:**  $B = 7.65 \pm 0.26$ (stat.)  $\pm 0.22$ (syst.) GeV<sup>-2</sup>



Largest uncertainty from overlay background subtraction

JHEP 02 (2020) 042

**Pomeron intercept:**  $\alpha(0) = 1.07 \pm 0.02 \text{ (stat.)} \pm 0.06 \text{ (syst.)} \pm 0.06 (\alpha')$ 

[qm]

do / dlog<sub>10</sub>ξ

Triple Regge Fit:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\xi} \propto \left(\frac{1}{\xi}\right)^{\alpha(0)} \quad \frac{\mathrm{e}^{Bt_{\mathrm{high}}} - \mathrm{e}^{Bt_{\mathrm{low}}}}{B}$$

 $B=B_0-2\alpha'\ln\xi$ 

### **Predictions**

(using triple Regge formalism): Pythia 8 A3: 1.14 Pythia8 A2: 1.00

Largest uncertainty from  $\alpha' = 0.25 \pm 0.25 \text{ GeV}^{-2}$ 

 $\xi$  from charged particles in inner detector Compatible results for  $\xi$  from ALFA



### Single diffractive with ALFA: Stacking up of events



Figure 4.2: 'Stacking up' of events at low values of  $\Delta \eta$ : Both diagrams show high  $\xi$  events with  $\Delta \eta$  reconstructed as ~ 0. The proton tag is on the right side of the detector (dotted blue lines) and  $\Delta \eta$  is measured from the edge of the detector on that side (dashed black lines marked as  $\eta = \pm 2.5$ ). Measured final state particles are shown in green and ones that fall out of the detector coverage are shown in red. The event shown in (a) does not contain any tracks outside the sensitive region of the detector on the side of tag. The event shown in (b) does. Both events are reconstructed as  $\Delta \eta \sim 0$ .

## Single diffractive + LHCf + AFP



|                   | Single diffraction                         |                                |  |  |  |
|-------------------|--------------------------------------------|--------------------------------|--|--|--|
|                   | event rate [Hz] ( $\sigma_{\rm vis}$ [mb]) | event count $(2 \text{ days})$ |  |  |  |
| AFP near station  | $46.5 \pm 1.3 \ (0.11)$                    | $8.0 \pm 0.3$ million          |  |  |  |
| AFP far station   | $46.5 \pm 1.3 \ (0.11)$                    | $8.0 \pm 0.3$ million          |  |  |  |
| ALFA near station | $3.8\pm0.2~(0.01)$                         | $0.7 \pm 0.1$ million          |  |  |  |
| ALFA far station  | $2.8 \pm 0.2 \ (7 \cdot 10^{-3})$          | $0.5 \pm 0.1$ million          |  |  |  |

## Single diffractive + LHCf + AFP

Other processes studied:



### **Predicted:**

|                   | $\Delta^+(1232)$ pro                        | duction                        |                   | N(1440) proc                                | luction                        |
|-------------------|---------------------------------------------|--------------------------------|-------------------|---------------------------------------------|--------------------------------|
|                   | event rate [mHz] ( $\sigma_{\rm vis}$ [nb]) | event count $(2 \text{ days})$ |                   | event rate [mHz] ( $\sigma_{\rm vis}$ [nb]) | event count $(2 \text{ days})$ |
| AFP near station  | $17.7 \pm 0.6 \ (41.3)$                     | $3050\pm100$                   | AFP near station  | $13.6 \pm 1.3 \; (31.8)$                    | $2350\pm220$                   |
| AFP far station   | $17.7 \pm 0.6 \ (41.3)$                     | $3050\pm100$                   | AFP far station   | $13.6 \pm 1.3 \; (31.8)$                    | $2350\pm220$                   |
| ALFA near station | $2.2 \pm 0.2 \ (5.2)$                       | $380 \pm 30$                   | ALFA near station | $4.2 \pm 0.5 \ (9.9)$                       | $730 \pm 90$                   |
| ALFA far station  | $1.6 \pm 0.2 (3.7)$                         | $270\pm30$                     | ALFA far station  | $3.2 \pm 0.4 \ (7.4)$                       | $550\pm70$                     |