Observation of QCD collectivity inside highmultiplicity jets in pp collisions with the CMS experiment

> Parker Gardner on behalf of the CMS collaboration Rice University. Houston, TX.

> > Forward Physics and QCD at the LHC and EIC 23-27 Oct 2023, Bad Honnef CMS-PAS-HIN-21-013 link

Background: from AA to pp

QGP-like signals from PbPb also found in high energy, high multiplicity pp and pPb! Collectivity in small systems?

Background: Important questions arise

- From how small of a system can partonic collectivity emerge?
- True surprise or consequence of strongly coupled QCD?
- Can hydrodynamics be generalized for non perturbative QCD processes?

Background: Important questions arise

- From how small of a system can partonic collectivity emerge?
- True surprise or consequence of strongly coupled QCD?
- Can hydrodynamics be generalized for non perturbative QCD processes?

Background: Puzzles in e⁺e⁻

- Hadron production in elementary collisions well described by thermal gas approach. Entanglement or MPI?
- 2D correlation studies in e+e- arxiv.org/pdf/ 1906.00489

A thermodynamical approach to hadron production in e^+e^- collisions

F. Becattini

Università di Firenze and INFN Sezione di Firenze, Largo E. Fermi 2, I-50125 Firenze, Italy (e-mail: becattini@vaxfi.fi.infn.it)

F. Becattini et. al., EPJC (2010) 66, 377

Background: Puzzles in e⁺e⁻

- Hadron production in elementary collisions well described by thermal gas approach. Entanglement or MPI?
- 2D correlation studies in e+e- arxiv.org/pdf/ 1906.00489

F. Becattini et. al., EPJC (2010) 66, 377

Postulate:

Strongly interacting QGP-like state can be formed by systems initiated by single quark or gluon propagating through QCD vacuum.

A. Baty, P. Gardner, W. Li, PhysRevC.107.064908,

Postulate:

Strongly interacting QGP-like state can be formed by systems initiated by single quark or gluon propagating through QCD vacuum.

Goal:

Goal of analysis is to look for evidence of in-jet collectivity using highest multiplicity parton jets in pp collisions at the CMS.

Rare Jets from the LHC

- Full 13 TeV pp dataset from LHC Run II
- >100 million jets analyzed
- A few thousand jets at highest multiplicities

CMS Experiment at the LHC, CERN Data recorded: 2018-Aug-03 17:13:35.770304 GMT Run / Event / LS: 320809 / 369847775 / 233

Particle Correlation in 2D

- Particle production dynamics seem similar to MinBias collisions in beam axis.
- Away side enhancement at Δφ*=π
- Peak at (0,0)

Particle Correlation in 2D

- Large Δη* pairs correspond to earliest moments after collision
- Study long range $\Delta \eta^*$ projection in $\Delta \phi^*$

Long range $\Delta \phi^*$ projection

CMS Experiment at the LHC, CERN Data recorded: 2018-Aug-03 17:13:35.770304 GMT Run / Event / LS: 320809 / 369847775 / 233

pT > 1.5 GeV

CMS Experiment at the LHC, CERN Data recorded: 2018-Aug-03 17:13:35.770304 GMT Run / Event / LS: 320809 / 369847775 / 233

Selecting jets: p_T > 550 GeV |η| < 1.6

> 100,000,000 Total

Top 2,500 by N_{ch...}

Results: 2D Correlations in Data

Results: Evolution of v₂{2}, 1D Fits

Results: Evolution of v₂{2}

- $V_2{2} = (V_{2\Delta}{2})^{1/2}$
- Good agreement between data, PYTHIA8, and Sherpa up to N_{ch}~80
- Data: increasing v₂{2} with N_{ch}>80, onset of collective effects?
- No such trend in PYTHIA8 or Sherpa …
- even with underlying event injection.

Evolution of v_2 {2}

- Linear fit for last 3 points in MC and Data, slope extracted
- Significance > 5σ comparing Data to Sherpa, PYTHIA8 in 0.3-3.0 & 0.5-3.0

In-jet v_2 {2} w.r.t to the jet axis *increases* across 3 j_T ranges in Data and decreases in Sherpa and PYTHIA8

... sees possible collectivity in single parton jets during fragmentation

Summary:

- ... raises profound questions about the nature of QCD in nonperturbative regime
- ... seeks to stimulate theoretical discussion and interpretations
- ... uses a small fraction of the eventual data from the LHC, just the beginning! 24

In-jet v_2 {2} w.r.t to the jet axis *increases* across 3 j_T ranges in *Data* and *decreases* in *Sherpa* and *PYTHIA8*

Summary:

Back Up

Results: Evolution of Fourier Harmonics with Njch

- V_{n∆} results extracted from 1D projections
- Negative odd Fourier components, positive even components.
- Decreasing magnitude of V_{n∆} for multiplicities up to ~80.
- Good agreement between data and MC for N_{ch} < 80

Particle Correlation in 2D

Results: $(|\Delta \eta^*| > 2)$ Correlations: $1D \Delta \phi^*$

Results: Evolution of v₂{2}, 1D Fits

Underlying Event Injection: Random Phase

Underlying Event Injection: Phase locked with Jet

Basic properties of jets and daughters in new frame

- Narrower distribution in high multiplicity jets
- dN/dη* in jet can approach that of peripheral AA

PileUp

From HLT_AK8PFJet500 events:

PUPPI algorithm *simplified*

- PUPPI mitigates PU by applying weights to tracks
- w = 1 from primary Vtx
- w = 0 from PU Vtx
- Caveats for 2 closest Vtx and unassociated hard tracks

CP5, CP2, and Ropewalk

PYTHIA8 parameter	CP2
PDF Set	NNPDF3.1 LC
$\alpha_S(m_Z)$	0.130
SpaceShower:rapidityOrder	off
MultipartonInteractions:EcmRef [GeV]	7000
$\alpha_{\rm S}^{\rm ISR}(m_Z)$ value/order	0.130/LO
$\alpha_{\rm S}^{\rm FSR}(m_{\rm Z})$ value/order	0.130/LO
$\alpha_{\rm S}^{\rm MPI}(m_Z)$ value/order	0.130/LO
$\alpha_S^{ME}(m_Z)$ value/order	0.130/LO
MultipartonInteractions:pT0Ref[GeV]	2.3
MultipartonInteractions:ecmPow	0.14
MultipartonInteractions:coreRadius	0.38
MultipartonInteractions:coreFraction	0.33
ColorReconnection:range	2.32

PYTHIA8 parameter	CP5	
PDF Set	NNPDF3.1 NI	NLO
$\alpha_S(m_Z)$	0.118	
SpaceShower:rapidityOrder	on	
MultipartonInteractions:EcmRef[GeV]	7000	
$\alpha_{\rm S}^{\rm ISR}(m_{\rm Z})$ value/order	0.118/NLO	
$\alpha_{S}^{FSR}(m_{Z})$ value/order	0.118/NLO	
$\alpha_{\rm S}^{\rm MPI}(m_{\rm Z})$ value/order	0.118/NLO	
$\alpha_S^{\overline{\mathrm{ME}}}(m_Z)$ value/order	0.118/NLC	2
MultipartonInteractions:pT0Ref[GeV]	1.41	
MultipartonInteractions:ecmPow	0.03	
MultipartonInteractions:coreRadius	0.76	
MultipartonInteractions:coreFraction	0.63	
ColorReconnection:range	5.18	

