Studies of the LHC Optics at Point 1 and Hard Diffractive Program

Sergio Javier Arbiol Val Institute of Nuclear Physics Polish Academy of Sciences

Diffractive physics

Hard Diffractive process: Protons are diffracted by a color singlet exchange. This process are mediated by either photons (QED) or pomerons (QCD). They have small cross-sections and are studied by perturbative QCD. Typical signatures are rapidity gaps and protons scattered at very small angles (μrad). Examples are:

Single Diffractive Jet Production.

Double Pomeron Exchange Jet Production.

Rapidity gap is often destroyed by background \rightarrow Need for detectors in forward region of ATLAS. The Atlas Forward Proton (AFP) is one such detector system.

What is AFP?

- Silicon Tracker (SiT): A set of four planes in each Roman Pot (RP) station.
 - ▶ 50 x 250 μ m pixel size.
 - ▶ Planes tilted 14° to improve resolution.
 - Resolution: $\sigma_x = 5\mu m$, $\sigma_y = 30\mu m$.
- Time-of-flight (ToF): Designed to measure the primary vertex z-coordinate.
 - ▶ Installed only in the FAR stations.
 - ▶ Composed of a 4 x 4 matrix of quartz bars, L-shaped and rotated 48° with respect to the LHC beam.

What is AFP?

- Q = Quadrupole magnets. Focus the beam.
- \blacktriangleright D = Dipole magnets. Bend the beam to maintain orbit.
- ► TCL = Beam collimators. Protect the machine from escaping radiation.

Proton Trajectories

The proton trajectory depends on:

- The energy loss on the interaction $\xi = 1 \frac{E_{proton}}{E_{heam}}$.
- ▶ The transverse momentum p_T at Interaction Point 1 (IP1).

Figure: AFP measures displacement, which is related to mass of the central system.

Acceptance of the detector limited by collimator apertures and beam-detector distance.

Optics run 3

In addition to the interaction, the protons trajectories are also influenced by accelerator optics parameters.

- ► β^* . The betatron function (at IP1) is a measure of the distance from a certain point to the one at which the beam is twice as wide.
- θ_C^* . Crossing angle of the beams at IP1.
- ϕ . Phase of the beams.

In 2022 and 2023 running this parameters were: $\sqrt{s} = 13.7$ TeV, $\beta^* = 0.3$ m, $\theta_C^* = 145 \ \mu rad$, $\phi = 270^{\circ}$.

Optics run 3: 2022

- $\blacktriangleright\,$ The geometric acceptance is in the range $0.02{<}\xi{<}0.12$.
- ► The corresponding mass acceptance is in the range $260 < M_{central} < 1560$ GeV.
- ▶ The distance to the beam is 2.3 < d < 2.8 mm for NEAR stations and 1.5 < d < 2.3 mm for FAR stations.

Optics run 3: 2023-2025

- The geometric acceptance is in the range $0.015 < \xi < 0.12$.
- The corresponding mass acceptance is in the range $195 < M_{central} < 1560$ GeV.
- \blacktriangleright The distance to the beam is 1.7<d<2.3 mm for NEAR stations and 1.5<d<2.3 mm for FAR stations.

Future Optics: Inner triplet polarity inversion

An inversion of the inner triplet polarity was proposed for 2024 running. However, it has been postponed.

The proposed change leaves AFP without acceptance \rightarrow End of AFP high- μ program. AFP will only take data on special runs.

Future Optics: HL-LHC

- ► For the HL-LHC we expect optics: $\sqrt{s} = 14$ TeV, $\beta^* = 15$ cm, $\theta_C^* = 250 \ \mu rad$, 4 different phases $\phi = 0^\circ$ (+x), $\phi = 90^\circ$ (+y), $\phi = 180^\circ$ (-x) and $\phi = 270^\circ$ (-y.).
- Location is not yet decided, but options are limited. Further constrained by the effects of collimators on acceptance.

Future Optics: HL-LHC Optics

- ► Default settings of the collimators leave us with almost no acceptance → need more open settings.
- ► Acceptance is shifted towards bigger masses.
- ▶ Physics case depends on the exact collimator settings used but is mainly focused on photon-induced process $\gamma \gamma \rightarrow WW/ZZ/t\bar{t}$ and BSM searches (ALP/DM).

Summary

- ▶ Optics in 2022 and 2023 running gives us good acceptance and proton separation. Due to some improvements of the detector, we have better acceptance for 2023.
- ▶ The inversion of the inner triplet polarity will leave us without acceptance in AFP. Postponed to 2025.
- ► Acceptance in HL-LHC depends greatly on collimator aperture, which conditions the physics case. With the default settings, we only have acceptance for high central mass.