

UNIVERSITY^{OF} BIRMINGHAM

Designing Silicon Tracking Detectors for High Radiation Environments

JOSH LOMAS, ON BEHALF OF ATLAS FORWARD PHYSICS AND QCD AT THE LHC AND EIC

5 OCT 2023

- Silicon Tracking Detectors are widely used in high energy physics experiments to measure the positions of charged particles
 - \circ High precision
 - Extremely modular
 - o Fast response

- Silicon Tracking Detectors are widely used in high energy physics experiments to measure the positions of charged particles
 - High precision

- Silicon Tracking Detectors are widely used in high energy physics experiments to measure the positions of charged particles
 - High precision

- Silicon Tracking Detectors are widely used in high energy physics experiments to measure the positions of charged particles
 - High precision

- Silicon Tracking Detectors are widely used in high energy physics experiments to measure the positions of charged particles
 - High precision

- Silicon Tracking Detectors are widely used in high energy physics experiments to measure the positions of charged particles
 - \circ High precision

- Silicon Tracking Detectors are widely used in high energy physics experiments to measure the positions of charged particles
 - \circ High precision

Silicon in AFP

- The AFP spectrometer in ATLAS uses Silicon Tracking detectors (SiT) to determine the p_T of deflected protons in the forward region
- Each station contains four **3D pixel** sensor planes:
 - $\circ~$ Each plane has 336 × 80 pixels, 50 × 250 μm^2 in size and is 230 μm thick
 - \circ Total active area of 1.68 × 2.00 cm²
 - Per pixel resolution: $\sigma_x \approx 6 \ \mu m$, $\sigma_v \approx 30 \ \mu m$
 - Slim edge to approach beam as close as possible
- Close proximity to the beam results in **intense and non-uniform irradiation** (up to $3 \times 10^{15} n_{eq}/cm^2$ in 3 years)
 - The sensors must be able to maintain sufficient performance after exposure to high levels of radiation

- When exposed to high levels of **radiation**, silicon detectors can become damaged via two main processes:
 - Bulk Damage: displacement of atoms from silicon lattice
 - Surface Damage: ionisation in oxide layers and formation of interface defects

- When exposed to high levels of **radiation**, silicon detectors can become damaged via two main ٠ processes:
 - **Bulk Damage:** displacement of atoms from silicon lattice Ο
 - **Surface Damage:** ionisation in oxide layers and formation of interface defects

Creates new energy levels in the silicon band gap

- When exposed to high levels of **radiation**, silicon detectors can become damaged via two main processes:
 - Bulk Damage: displacement of atoms from silicon lattice
 - Surface Damage: ionisation in oxide layers and formation of interface defects

Creates new energy levels in the silicon band gap

- 1
 Conduction band
 3

 Donor (+)
 2

 Acceptor (-)

 Valence band
- Reduce effective space charge

 Increased full depletion
 voltage
- 2. Increased leakage current
 - Increased noise and power consumption
- 3. Charge trapping
 - Decreases charge collection efficiency

- When exposed to high levels of **radiation**, silicon detectors can become damaged via two main processes:
 - Bulk Damage: displacement of atoms from silicon lattice
 - Surface Damage: ionisation in oxide layers and formation of interface defects

Ionisation occurs in the oxide forming electron-hole pairs

- When exposed to high levels of **radiation**, silicon detectors can become damaged via two main processes:
 - Bulk Damage: displacement of atoms from silicon lattice
 - Surface Damage: ionisation in oxide layers and formation of interface defects

Al SiO₂ Holes trapped at interface with bulk O O O O O O O O O O O O O Op-Si

Ionisation occurs in the oxide forming electron-hole pairs

- When exposed to high levels of **radiation**, silicon detectors can become damaged via two main processes:
 - Bulk Damage: displacement of atoms from silicon lattice
 - Surface Damage: ionisation in oxide layers and formation of interface defects

Al SiO₂ Holes trapped at interface with bulk O \rule{O} $\rule{O$

Ionisation occurs in the oxide forming electron-hole pairs

Electrons able to cross between strips

- Decreased inter-strip resistance

 Decreased precision
 - Increased charge sharing
 - Reduced sensitivity
- Increased inter-strip capacitance
 o Increased noise

Radiation Damage - Mitigation

- There are several **design measures** which can be taken to mitigate radiation effects:
- Use n-type implants in a p-type silicon bulk (n-in-p) instead of p-in-n
 - Leads to larger signals in electrodes after irradiation

<mark>p</mark>-in-n

Radiation Damage - Mitigation

- There are several **design measures** which can be taken to mitigate radiation effects:
- Use n-type implants in a p-type silicon bulk (n-in-p) instead of p-in-n
 - Leads to larger signals in electrodes after irradiation
- p-type silicon can be deposited between n-type implants (p-spray/stop)
 - Prevents charge sharing after irradiation

Radiation Damage - Mitigation

- There are several **design measures** which can be taken to mitigate radiation effects:
- Use n-type implants in a p-type silicon bulk (n-in-p) instead of p-in-n
 - Leads to larger signals in electrodes after irradiation
- p-type silicon can be deposited between n-type implants (p-spray/stop)
 - Prevents charge sharing after irradiation
- **3D pixel detectors** use column-like n and p-type electrodes which penetrate the substrate
 - Gives smaller drift path, reducing bulk damage
 - Lower bias voltage required
 - Used in the ATLAS IBL, AFP and ITk detectors

Radiation Damage - Recovery

- When irradiated silicon is heated it can recover some of the damage done by radiation in a process called **annealing**
- However, too much annealing can be detrimental

DOI:10.1109/TNS.2018.2819506

FORWARD PHYSICS AND QCD AT THE LHC AND EIC - JOSH LOMAS

Summary

- Significant use of silicon tracking detectors in forward physics
- Particularly high radiation intensities experienced in forward physics detectors
- Continued development towards reducing the effects of radiation damage
- Long term: silicon timing detectors currently being developed for next generation detectors (e.g. LGADs [DOI 10.1088/1748-0221/13/03/C03014]) allowing sub-ns timing