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• Silicon Tracking Detectors are widely used in high energy physics experiments to measure the 
positions of charged particles
o High precision
o Extremely modular
o Fast response
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• The AFP spectrometer in ATLAS uses Silicon Tracking detectors (SiT) to determine the pT of deflected 
protons in the forward region

• Each station contains four 3D pixel sensor planes:
o Each plane has 336 × 80 pixels, 50 × 250 μm2 in size 

and is 230 μm thick
o Total active area of 1.68 × 2.00 cm2

o Per pixel resolution: 𝜎𝑥 ≈ 6 µm, 𝜎𝑦 ≈ 30 µm
o Slim edge to approach beam as close as possible

• Close proximity to the beam results in intense and non-
uniform irradiation (up to 3 × 1015 neq/cm2 in 3 years)
o The sensors must be able to maintain sufficient 

performance after exposure to high levels of radiation
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• When exposed to high levels of radiation, silicon detectors can become damaged via two main 
processes:
o Bulk Damage: displacement of atoms from silicon lattice
o Surface Damage: ionisation in oxide layers and formation of interface defects 
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Energetic particles knock atoms out 
of the silicon lattice, forming lattice 

defects

Creates new energy levels in the 
silicon band gap

1. Reduce effective space charge
o Increased full depletion 

voltage
2. Increased leakage current

o Increased noise and power 
consumption

3. Charge trapping
o Decreases charge collection 

efficiency
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Ionisation occurs in the oxide forming electron-hole pairs

Holes trapped at interface with bulk

Electrons able to cross between strips

SiO2

Al

n+-Si
p-Si

• Decreased inter-strip resistance
o Decreased precision
o Increased charge sharing
o Reduced sensitivity

• Increased inter-strip capacitance
o Increased noise

• When exposed to high levels of radiation, silicon detectors can become damaged via two main 
processes:
o Bulk Damage: displacement of atoms from silicon lattice
o Surface Damage: ionisation in oxide layers and formation of interface defects 
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• There are several design measures which can be taken to mitigate radiation effects:

p+-Si

n-Si

n+-Si

p-in-n n-in-p

• Use n-type implants in a p-type silicon bulk (n-in-p) 
instead of p-in-n
o Leads to larger signals in electrodes after 

irradiation
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• There are several design measures which can be taken to mitigate radiation effects:

• Use n-type implants in a p-type silicon bulk (n-in-p) 
instead of p-in-n
o Leads to larger signals in electrodes after 

irradiation

• p-type silicon can be deposited between n-type 
implants (p-spray/stop)
o Prevents charge sharing after irradiation

SiO2

Al

n+-Si
p-Si

p+-Si
Free electrons unable to 
cross between strips
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• There are several design measures which can be taken to mitigate radiation effects:

• Use n-type implants in a p-type silicon bulk (n-in-p) 
instead of p-in-n
o Leads to larger signals in electrodes after 

irradiation

• p-type silicon can be deposited between n-type 
implants (p-spray/stop)
o Prevents charge sharing after irradiation

• 3D pixel detectors use column-like n and p-type 
electrodes which penetrate the substrate
o Gives smaller drift path, reducing bulk damage
o Lower bias voltage required
o Used in the ATLAS IBL, AFP and ITk detectors
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• When irradiated silicon is heated it can recover some of the damage done by radiation in a process 
called annealing

• However, too much annealing can be detrimental

Reduction in effective space charge
• Will increase again after too 

much annealing

Continuously decreased leakage 
current

Decreased trapping for electrons
• Increases trapping for holes

DOI:10.1109/TNS.2018.2819506



A

Summary

25/10/2023 FORWARD PHYSICS AND QCD AT THE LHC AND EIC - JOSH LOMAS 11

• Significant use of silicon tracking detectors in forward physics
• Particularly high radiation intensities experienced in forward physics detectors
• Continued development towards reducing the effects of radiation damage

• Long term: silicon timing detectors currently being developed for next 
generation detectors (e.g. LGADs [DOI 10.1088/1748-0221/13/03/C03014]) 
allowing sub-ns timing
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