Overview of ATLAS Roman Pot Detectors Current Status and Future Perspectives

Maciej Trzebiński on behalf of ATLAS Forward Detectors

> Institute of Nuclear Physics Polish Academy of Sciences

WE-Heraeus-Seminar "Forward Physics and QCD at the LHC and EIC", Bad Honnef, Germany, 23 – 27 October 2023

Overview of ATLAS Roman Pot Detectors: Current Status and Future Perspectives

Usual situation at the LHC:

Can proton(s) remain intact?

Usual situation at the LHC:

Overview of ATLAS Roman Pot Detectors: Current Status and Future Perspectives

Physics Processes

■ hard – perturbative approach is valid; small cross-sections:

Measurement Methods

Assumption: one would like to measure diffractive interactions at the LHC. Typical diffractive topology: a gap in rapidity is present between proton(s) and central system and one or both interacting proton stay intact.

M. Trzebiński

Overview of ATLAS Roman Pot Detectors: Current Status and Future Perspectives

Forward Detectors @ IP1 (ATLAS)

Intact protons \rightarrow **natural diffractive signature** \rightarrow usually scattered at very small angles (μ rad) \rightarrow detectors must be located far from the Interaction Point.

- Absolute Luminosity For ATLAS
- 240 m from ATLAS IP
- soft diffraction (elastic scattering)
- special runs (high β^* optics)
- vertically inserted Roman Pots
- tracking detectors, resolution:

 $\sigma_x = \sigma_y = 30 \ \mu m$

ATLAS Forward Proton

- 210 m from ATLAS IP
- hard diffraction
- nominal runs (collision optics)
- horizontally inserted Roman Pots
- tracking detectors, resolution: $\sigma_x = 6 \ \mu m, \ \sigma_y = 30 \ \mu m$
- timing detectors, resolution: $\sigma_t \sim 25 \text{ ps}$

× ×

Overview of ATLAS Roman Pot Detectors: Current Status and Future Perspectives

Overview of ATLAS Roman Pot Detectors: Current Status and Future Perspectives

Overview of ATLAS Roman Pot Detectors: Current Status and Future Perspectives

Overview of ATLAS Roman Pot Detectors: Current Status and Future Perspectives

Overview of ATLAS Roman Pot Detectors: Current Status and Future Perspectives

Overview of ATLAS Roman Pot Detectors: Current Status and Future Perspectives

Overview of ATLAS Roman Pot Detectors: Current Status and Future Perspectives

Overview of ATLAS Roman Pot Detectors: Current Status and Future Perspectives

Overview of ATLAS Roman Pot Detectors: Current Status and Future Perspectives

ALFA Detectors

- Two stations at each ATLAS side, 240 m far from the IP1.
- Scintillating fibres position measurement with precision of \sim 30 μ m,
- Roman Pot technology detectors can move in vertical (y) direction.

open

Overview of ATLAS Roman Pot Detectors: Current Status and Future Perspectives

AFP: Silicon Trackers (SiT)

- Four detectors in each station.
- Technology: slim-edge 3D ATLAS IBL pixel sensors bonded with FE-I4 readout chips.
- Pixel size: 50*x*250 μm².
- Tilted by 14^0 to improve resolution in *x*.
- Resolution: \sim 6 μ m in x and \sim 30 μ m in y.
- Trigger: majority vote (2 out of 3; two chips in FAR station are paired and vote as one).
- No major changes between Run 2 and Run 3 detector setups.

From JINST **11** (2016) P09005; JINST **12** (2017) C01086

M. Trzebiński

Overview of ATLAS Roman Pot Detectors: Current Status and Future Perspectives

Time-of-Flight Detectors (ToF)

ToF LQbars

Tracking-Timing correlation y

Setup and performance shown above are from test-beam (Opt. Express 24 (2016) 27951, JINST 11 (2016)

- Light is directed to Photonis MCP-PMT.
- Expected resolution: ${\sim}25$ ps.
- Installed in both FAR stations.

- Improvement in silicon detector cooling (new heat exchangers).
- Production of new tracking modules.
- New design of detector flange: Out-of-Vacuum solution for ToF detectors
- New trigger module: possibility to trigger on single train.
- New photo-multipliers: address inefficiency issues from Run2 data-taking.
- AFP regularly takes data during LHC Run 3. In addition, few special low- μ datasets were collected.

More upgrades planned for coming LHC Year End Technical Stop:

- design, production and installation of pot heat-sink to address issues with overheating at highest beam intensities,
- production of picoTDC for ToF,
- installation of new Local Trigger Boards,
- all upgrades will be followed by laser survey (positioning wrt. LHC).

Data recorder so far by AFP:

- 32.0 fb⁻¹ in 2017 (left),
- 34.1 fb⁻¹ in 2022 (top right),
- 26.3 fb⁻¹ in 2023 (bottom right),
- in total: 92.4 fb⁻¹.

ALFA: $\beta^* = 3/6$ km campaign in 2023 + various Run 1 and Run 2 high- β^* datasets.

With successful $\beta^* = 3.6$ km campaign, ALFA finished its unexpectedly long data-taking story.

AFP took good data in Run 3 and is eagerly waiting for continuation.

Backup

 $X(M_x) \circ t - squared four-momentum transferred from the proton:$

$$t \approx -p_T^2$$

- *p*_T proton transverse momentum
- ξ momentum fraction of the proton carried by the Pomeron:

$$\xi = 1 - E/E_{beam}$$

 $\xi \approx \sum_{i} (E^{i} \pm p_{z}^{i})/\sqrt{s}$

• $\Delta\eta$ – pseudorapidity gap – space in which no particles are produced / detected

Proton trajectory is determined by the LHC magnetic field.

Proton trajectory is determined by the LHC magnetic field.

collision optics, ALFA and AFP: trajectory due to ξ $\xi = 1 - E_{proton}/E_{beam}$

Proton trajectory is determined by the LHC magnetic field.

collision optics, ALFA and AFP: trajectory due to ξ $\xi = 1 - E_{proton}/E_{beam}$

collision optics, ALFA and AFP: trajectory due to p_y

Proton trajectory is determined by the LHC magnetic field.

collision optics, ALFA and AFP: trajectory due to ξ $\xi = 1 - E_{proton}/E_{beam}$

collision optics, ALFA and AFP: trajectory due to p_y

special high- β^* optics, ALFA: improve acceptance in $p_T = \sqrt{px^2 + py^2}$

Overview of ATLAS Roman Pot Detectors: Current Status and Future Perspectives

Geometric Acceptance for Various Optics

Ratio of the number of protons with a given relative energy loss (ξ) and transverse momentum (p_T) that crossed the active detector area to the total number of the scattered protons having ξ and p_T .

 $\beta^* = 0.55 \text{ m}$ nominal (*collision*) $\beta^* = 90 \text{ m}$ special (*high*- β^*)

$eta^* = 1000 \text{ m}$ special (*high-\beta^**)

Proton Tagging or Position Measurement?

- At the interaction point proton (IP) is fully described by six variables: position (x_{IP}, y_{IP}, z_{IP}), angles (x'_{IP}, y'_{IP}) and energy (E_{IP}).
- They translate to unique position at the forward detector (*x*_{DET}, *y*_{DET}, *x*'_{DET}, *y*'_{DET}).
- Idea: get information about proton kinematics at the IP from their position in the AFP detector.
- Exclusivity: kinematics of scattered protons is strictly connected to kinematics of central system.
- Detector resolution play important role in precision of such method.

Pile-up Background Reduction

signal

Idea:

- measure difference of time of flight of scattered protons, $(t_A - t_C)/2$
- compare to vertex reconstructed by central detector. эl

$$(t_A - t_C) \cdot c/2 - z_{central}$$

10-4

10-5

10

60

etector position 2 mm

50

+ Timing 20 ps

+ Timing 10 ps + M_v>800 GeV

40

Pythia 8

30

20

Performance of Time-of-Flight Detectors in 2017

- Performance analysis based on 2017 data (taken with $\mu \approx$ 2): ATL-FWD-PUB-2021-002.
- Poor efficiency of few percent due to fast PMT degradation; effect not expected during Run 3 due to new PMTs.
- Very good timing resolution: 20 50 ps for single bar.
- Overall time resolution of each ToF detector:
 - 20 ± 4 ps for side A,
 - 26 ± 5 ps for side C,
 - note: systematic uncertainties dominate.

