Performance of the ATLAS Forward Proton detector

Savannah Clawson (DESY), on behalf of the ATLAS Forward Detectors group

Forward Physics and QCD at the LHC and EIC Physikzentrum Bad Honnef 23 Oct - 27 Oct 2023

Physics motivation

Diffractive jets ATL-PHYS-PUB-2017-012

Exclusive jets

Trzebinski et al 1503.00699 Harland-Lang et al 1405.0018

Top quarks

Higgs boson

Cox et al 0709.3035 Heinemeyer et al 0708.3052

Leptons CMS 1803.04496 ATLAS 2009.14537

W bosons Tizchang, Etesami 2004.12203 Baldenegro et al 2009.08331

Axion-like particles Harland-Lang & Tasevsky 2208.10526 Baldenegro et al 1803.10835

SUSY dark matter

Beresford & Liu 1811.06465 Harland-Lang et al 1812.04886

Types of processes which allow protons to remain intact:

- **Diffraction** via pomeron exchange
- Exclusive photon-photon fusion
- discrimination tool for models:
 - QCD hard and non-perturbative,
 - probing electroweak scale,
 - ▶ physics beyond SM.

Natural ways to seek for diffraction

- rapidity gaps,
- forward protons

Physics motivation

Diffractive jets ATL-PHYS-PUB-2017-012

Exclusive jets

Trzebinski et al 1503.00699 Harland-Lang et al 1405.0018

Top quarks Goncalves et al 2007.0456

Higgs boson

Cox et al 0709.3035 Heinemeyer et al 0708.3052

Leptons CMS 1803.04496 ATLAS 2009.14537

W bosons Tizchang, Etesami 2004.12203 Baldenegro et al 2009.08331

Axion-like particles Harland-Lang & Tasevsky 2208.10526 Baldenegro et al 1803.10835

SUSY dark matter Beresford & Liu 1811.06465 Harland Lang et al 1812 04886

Types of processes which allow protons to remain intact:

- **Diffraction** via pomeron exchange
- Exclusive photon-photon fusion
- **discrimination tool** for models:
 - QCD hard and non-perturbative,
 - probing electroweak scale,
 - ▶ physics beyond SM.

Natural ways to seek for diffraction

- rapidity gaps,
- forward protons

What is the **ATLAS**

Forward

Proton detector?

Q = Quadrupole magnets
 D = Dipole magnets
 TCL = Beam collimators
 ALFA = Absolute Luminosity For ATLAS

See also: poster by Maciej Trzebinski on ATLAS Roman Pot Detectors

Q = Quadrupole magnets
 D = Dipole magnets
 TCL = Beam collimators
 ALFA = Absolute Luminosity For ATLAS

See also: poster by Maciej Trzebinski on ATLAS Roman Pot Detectors

- All stations have a **Silicon Tracker (SiT)** with four planes of edgeless 3D silicon pixel sensors
- FAR stations have additional quartz Cherenkov Time-of-Flight (ToF) detectors
- All housed in **Roman Pots (RP)** inside the LHC vacuum chamber. When proton beams are circulating, the pots are moved mechanically towards the beam centre

- FAR stations have additional quartz Cherenkov hime-or-right (101) detectors
- All housed in **Roman Pots (RP)** inside the LHC vacuum chamber. When proton beams are circulating, the pots are moved mechanically towards the beam centre

- FAR stations have additional quartz Cherenkov mile-or-right (101) detectors
- All housed in **Roman Pots (RP)** inside the LHC vacuum chamber. When proton beams are circulating, the pots are moved mechanically towards the beam centre

Figure adapted from [2021 JINST 16 P01030]

Figure adapted from [2021 JINST 16 P01030]

Intact protons travel ~200m to AFP

Figure adapted from [2021 JINST 16 P01030]

Proton time-of-flight measured by AFP ToF detectors

Difference in time-of-flight used to calculate interaction vertex position and compare to reconstructed primary vertex in central ATLAS detector

AFP Performance

Available data

PHYSICS MOTIVATION: photon-induced processes, central exclusive diffraction

PHYSICS MOTIVATION: single-diffractive production, pomeron structure, rapidity gaps

DESY. | Savannah Clawson | savannah.clawson@desy.de | EPS-HEP 2023: AFP status, performance and new physics

DESY. | Savannah Clawson | savannah.clawson@desy.de | EPS-HEP 2023: AFP status, performance and new physics

Components of AFP alignment

- Track reconstruction relies on knowing the relative alignment of SiT planes in each station
 Ideal alignment
 In reality
- Preliminary alignment calculated for Run 3
- Investigating alternative global χ^2 method to remove weak modes and incorporate more parameters

GLOBAL DOMINANT SYSTEMATIC IN RUN 2

- Accurate reconstruction of proton position and therefore energy loss relies on knowing the relative position of AFP stations wrt the beam
- Several components to this "global alignment"
 - Distances related to beam–detector distance measured with
 Beam-Based Alignment (BBA) and Beam-Position Monitoring (BPM) methods
 - Residual corrections derived from exclusive dimuon data IN PROGRESS

Global alignment: exclusive dimuons

IN RUN 3

- Hoping to reduce systematic to ~100 μm
- Needs understanding of LHC beam optics IN PROGRESS
 - → See poster by Sergio Javier Arbiol Val

[1] ALP search with AFP JHEP 07 (2023) 234, [2] Dileptons + AFP proton tag PRL 125 (2020) 261801

DESY. | Savannah Clawson | savannah.clawson@desy.de | EPS-HEP 2023: AFP status, performance and new physics

Proton reconstruction efficiency in Run 2

• Station tag-and-probe method used to find efficiency of reconstructing a proton

- Efficiency in outer (FAR) stations is lower due to proton showering between stations
- Default proton reconstruction requires a proton track in both NEAR and FAR station → proton reconstruction efficiency = 92 ± 2 %

DESY. | Savannah Clawson | savannah.clawson@desy.de | EPS-HEP 2023: AFP status, performance and new physics

Time-of-flight: Run 2

ATL-FWD-PUB-2021-002

- Overall timing resolution measured to be between 20 30 ps
 - Equal to ~5 mm vertex resolution, improving background suppression in high pileup runs

conditions

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ForwardDetPublicResults

NEW: Time-of-flight in Run 3

What's new?

- New PMTs and Out-of-Vacuum solution in Run 3 to address ToF inefficiency
- New trigger module: possibility to trigger on single train

Impact:

- Early low-pileup data shows high ToF channel efficiency
- Performance in higher pileup runs and over time is under study

Summary

- Improved understanding of AFP operation and performance in Run 3
- Dominant systematics in Run 2 analyses arose from LHC beam optics effects and global alignment
 - → Lots of effort in Run 3 to reduce these
- Early Run 3 low-pileup data shows high ToF efficiency

Lots of new physics from Run 2 and 3 still to come!

AFP public physics results:

- <u>ATL-PHYS-PUB-2015-003</u> Exclusive Jet Production with Forward Proton Tagging Feasibility Studies for the AFP Project
- <u>ATL-PHYS-PUB-2017-012</u> Proton tagging with the one arm AFP detector
- PRL 125 (2020) 261801 Observation and measurement of forward proton scattering in association with lepton pairs produced via the photon fusion mechanism at ATLAS
- <u>JHEP 07 (2023) 234</u> Search for an axion-like particle with forward proton scattering in association with photon pairs at ATLAS

Optics

• Proton trajectories and therefore **AFP acceptance** depend heavily on LHC **beam optics**

 Proton transport determined from MAD-X simulation to relate proton position in AFP to proton energy loss. From Run 2 dilepton measurement <u>PRL 125 (2020) 261801</u>:

$$x(\xi) = -119\xi - 164\xi^2$$

- Systematic uncertainties determined by varying beam crossing angle in MAD-X.
 Large uncertainty in many Run 2 analyses.
- In Run 3: Studies on varying magnetic fields to cross-check results and reduce systematic uncertainties

AFP-ToF: LQ bar dimensions (Run 2)

4 channels aligned along proton trajectories to form "trains"

The transverse size of the LQ-bars range from 2 mm (closest to beam) to 5 mm (farthest from the beam)

LQ bar dimensions: $Z \times Y \times X \text{ [mm]} / \alpha_{taper} \text{ [°]} / \Delta_{taper} \text{ [mm]}$					
train	radiators A	radiators B	radiators C	radiators D	lightguides
0	$2 \times 62.41 \times 6$	$2 \times 56.78 \times 6$	$2 \times 51.15 \times 6$	$2 \times 45.52 \times 6$	$71.3 \times 5 \times 6/18/3$
1	$4 \times 58.16 \times 6$	$4 \times 52.53 \times 6$	$4 \times 46.9 \times 6$	$4 \times 41.27 \times 6$	$67.2 \times 5 \times 6/18/1$
2	$5 \times 52.91 \times 6$	$5 \times 47.28 \times 6$	$5 \times 41.65 \times 6$	$5 \times 36.02 \times 6$	$62.1 \times 5 \times 6/0/0$
3	$5.5 \times 46.6 \times 6$	$5.5 \times 43.03 \times 6$	$5.5 \times 35.4 \times 6$	$5.5 \times 29.77 \times 6$	$56.6 \times 5.5 \times 6/0/0$

AFP-SiT: Local (inter-plane) alignment

Ideal alignment

In reality

- Track reconstruction requires knowledge of the relative position of SiT planes within each station
- Offsets typically O[10 μm] and rotations O[mrad]

- Preliminary alignment calculated for 2022 V
- Iterative method planned to be updated with global χ^2 method (used for ATLAS inner detector alignment)

2022 preliminary inter-plane alignment

AFP trigger system

SiT trigger dead-time is 400 ns (= 16 bunch crossings) and therefore SiT trigger is only used in low pileup runs

Correlation with ATLAS in Run 3

- Analysis of AFP performance is underway, with first checks for correlation with activity in central ATLAS
- Correlation of proton position in AFP (related to proton energy loss) with

Number of inner detector tracks:

Energy deposited in calorimeter:

- Requirement of exactly one track reconstructed in each AFP station
- The more activity seen in ATLAS, the more energy the proton in AFP has lost V

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ForwardDetPublicResults

BBA and BPM procedures

- Position of SiT sensors wrt. the beam must be known accurately to reconstruct proton position and energy loss
- Beam–station distance calculated with Beam Based Alignment (BBA) and Beam Position Monitoring (BPM) methods

BBA

- AFP moved into beam until signal measured in beam loss monitor (BLM)
- BLM intercept secondary particles showers caused by beam particles

BPM

- Results from BBA cross-checked with BPM on shorter time-scales
- Non-destructive diagnostic scans to find the beam centre and monitor longitudinal shape

Beam

Run 3: Track position in AFP

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ForwardDetPublicResults

Events triggered by MBTS, with reconstructed primary vertex and exactly one track in both NEAR and FAR stations on a given side.

Time-of-flight: Run 3

Correlation between SiT and ToF detectors

The x position of the track reconstructed in AFP SiT (FAR station) in events in which a single-train signal in ToF detector was observed. Different colors were used to visualize the SiT regions corresponding to individual trains. The machined x-width of the ToF bars is 3/3/5/5.5 mm for train 0/1/2/3. The differences in the xAFP FAR between sides are due to inaccuracy of global alignment

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ForwardDetPublicResults

ATLAS forward detectors

Diagram by Maciej Lewicki

AFP physics goals

INCREASING LUMINOSITY DEMAND

[Nice summary of diffractive physics at the LHC: arXiv:1909.10830]

- Study of rapidity gaps in diffractive processes
- Study of single-diffractive production of W, Z, and jets
- Study of the pomeron structure in soft and hard diffraction
- Study of Central Exclusive Production (CEP) in which the entire momentum loss of the protons goes into the creation of the central system
 - Measure photon-induced WW production to probe anomalous gauge couplings

List of acronyms used in this talk

- AFP = ATLAS Forward Proton
- ALFA = Absolute Luminosity For ATLAS
- ALP = Axion-Like Particle
- ATLAS = A large Toroidal LHC Apparatus
- BBA = Beam Based Alignment
- **BPM = Beam Position Monitoring**
- LHC = Large Hadron Collider
- MBTS = Minimum Bias Trigger Scintillator
- (MCP)PMT = (MicroChannel Plate) PhotoMultiplier Tube
- SiT = Silicon Tracker
- SM = Standard Model
- ToF = Time of Flight