Physics prospects and data preparation for UPC studies with ALICE in Run 3

Anisa Khatun (for the ALICE Collaboration) The University of Kansas 798. WE-Heraeus Seminar Physikzentrum Bad Honnef 25/10/2023

Office of Science

<u>New Common Online-Offline (O2) Computing system</u>

A. Khatun

Physics of UPCs

- Ultra-Peripheral Collisions (UPCs) provide a tool to study photoproduction at the LHC.
- Possible maximum CM energy ($W_{\gamma p}$) reaches upto \sim 3 TeV (5-10 times higher than that was available at HERA) at the LHC for pp collisions.
- Possible to study nuclear shadowing and saturation region of gluon distribution (Bjorken-x values down to $\sim 10^{-6}$).
- Photoproduction of vector mesons is sensitive to the gluon distribution in the target nucleus [IJMPA 30 (2015) 1542012]
- ALICE (at the LHC) has come a long way with the UPCs since Run 1 [ALICE, arXiv:2211.04384] \checkmark
- Run 3 opens window to explore new regimes e.g search for axions-like particles and inclusive UPCs!

Photon breaks up target nuclei

A. Khatun

Progress on UPCs at ALICE

ALI-PUB-92319

ALICE, JHEP 09 (2015) 095

		PbPb
	σ	Central
Meson		Tota
$ ho ightarrow \pi^+\pi^-$	5.2b	5.5 E
$\rho' \to \pi^+ \pi^- \pi^+ \pi^-$	730 mb	210 M
$\phi ightarrow { m K}^+ { m K}^-$	0.22b	82 N
${ m J}/\psi o \mu^+\mu^-$	1.0 mb	1.1 M
$\psi(2{ m S}) o \mu^+ \mu^-$	$30\mu b$	35 K
$ m Y(1S) ightarrow \mu^+ \mu^-$	$2.0 \ \mu b$	2.8 K

A. Khatun

WE-Heraeus seminar

4

Clear peak of coherent ρ^0 in Pb-Pb UPCs at $\sqrt{s_{_{NN}}} = 5.36$ TeV

Example corresponds to pilot beam data taking in 2022 with integrated luminosity ~140 mb⁻¹

Naturally things don't go as expected!

- Despite the issues we were able to collect large sample pp data (see next slides for details)
- LHC faced vacuum incident and postponed pp reference data taking for 2024.
- First Pb-Pb data taking with 2 kHz hadronic interaction rate recorded on 26th September :)

A. Khatun

With more data comes more challenges!!

- \checkmark ITS affected with beam background
 - Issue is fixed with dedicated background study
 - Now successful data taking ongoing with 45 kHz Hadronic Interaction Rate !
 - Lack of trigger makes reconstruction process challenging-> alignment, track to collision association, vertex finding, TPC distortion map etc
- \checkmark Higher rates, larger distortions and larger time uncertainties due to the continuous readout Back to square one with new analysis framework!
- ✓ Work and development in progress, stay tuned!

UPC Physics prospects in Run 3 and beyond : Exclusive vector meson photoproduction

- Precision study of vector meson ${\cal S}_{\sf Pb}$ photoproduction in UPCs with significant increase in integrated luminosity. Uncertainties for nuclear suppression factor are expected to be at the level of 4%. [CERN Yellow Rep. Monogr. 7 (2019) 1159-1410]. See poster by Simone Ragoni. Double vector meson photoproduction. UPC bottomonia production. [arXiv:2303.03007v1]
- Exclusive ϕ production in the dikaon channel (currently done with Run 2 data in ALICE -> Results awaiting).
- Dissociative J/ ψ in Run 3 with FOCAL acceptance in Run 4 [J. Phys. G: Nucl. Part. Phys. **50** 055105
- Exclusive J/ ψ and $\psi(2S)$ (+ Run 4 with Focal acceptance) in p-Pb UPCs [J. Phys. G: Nucl. Part. Phys. 50 055105]

What one could possibly do in ALICE? A personal wish list !

- Open heavy flavour in UPCs : Possible with triggerless data taking, cross section much larger than charmonia [Nucl. Phys. A 976 (2018) 33-45]. Only a single gluon is involved unlike vector meson photoproductions.
- Direct measurement of τ anomalous magnetic moment.
- $\checkmark \gamma \gamma$ interaction in UPC : Measuring light-by-light scattering in Pb-Pb and looking for resonances in the invariant mass distributions -> Axion Like Particles (ALPs) [ATLAS, JHEP 11 (2021) 050].
- Axions are likely lighter particles, ALICE can potentially push down the search to 1 GeV with focus on low invariant masses [PRD 99 (2019) 9, 093013].
- Tetraquarks : $\gamma \gamma \rightarrow T_{4c} \rightarrow 4l$ [PLB 816 (2021) 136249].

Inclusive/semi inclusive UPCs e.g. inclusive J/ψ , jets in UPCs.

Challenging but possible to study at the LHC.

Central Exclusive Production (CEP) at ALICE

Study of diffraction reactions (exchange of colourless objects)

rapidity.

and 2023. (We collected ~8 pb^{-1} in Run 2!)

A. Khatun

Central Exclusive Production (CEP) at ALICE

 \checkmark Particle Identification carried by TPC down to low p_T based on specific energy loss (pion, kaon hypothesis). \checkmark The events are selected with two opposite charge tracks. \checkmark Visible resonance in raw invariant mass distributions of opposite-sign pions and kaons. \checkmark Evidence of strangeness in double gap events with $\phi(1020)$ and $f_2(1525)$ states.

A. Khatun

WE-Heraeus seminar

10

