The LHC as a $\gamma\gamma$ collider

Christophe Royon University of Kansas, Lawrence, USA Forward Physics at the LHC and the EIC

October 23-27 2023, Bad Honnef, Germany

Contents

- Proton tagging at the LHC
- Possible observation of WW exclusive production
- $\gamma\gamma\gamma\gamma\gamma$, $\gamma\gamma\gamma\gamma Z$, $\gamma\gamma WW$, $\gamma\gamma ZZ$ anomalous coupling studies
- Triple gauge $\gamma\gamma W$ anomalous couplings
- Search for Axion-like particles

What is the CMS-TOTEM Precision Proton Spectrometer (CT-PPS)?

- Joint CMS and TOTEM project: https://cds.cern.ch/record/1753795
- LHC magnets bend scattered protons out of the beam envelope
- Detect scattered protons a few mm from the beam on both sides of CMS: 2016-2018, \sim 115 fb^{-1} of data collected
- Similar detectors: ATLAS Forward Proton (AFP)

Detecting intact protons in ATLAS/CMS-TOTEM at the LHC

- Tag and measure protons at ±210 m: AFP (ATLAS Forward Proton), CT-PPS (CMS TOTEM - Precision Proton Spectrometer)
- All diffractive cross sections computed using the Forward Physics Monte Carlo (FPMC)
- Complementarity between low and high mass diffraction (high and low cross sections): special runs at low luminosity (no pile up) and standard luminosity runs with pile up

Search for $\gamma\gamma WW$, $\gamma\gamma\gamma\gamma\gamma$ quartic anomalous coupling

- Study of the process: $pp \rightarrow ppWW$, $pp \rightarrow ppZZ$, $pp \rightarrow pp\gamma\gamma$
- Standard Model: $\sigma_{WW} = 95.6$ fb, $\sigma_{WW}(W = M_X > 1 TeV) = 5.9$ fb
- Process sensitive to anomalous couplings: $\gamma\gamma WW$, $\gamma\gamma ZZ$, $\gamma\gamma\gamma\gamma\gamma$; motivated by studying in detail the mechanism of electroweak symmetry breaking, predicted by extradim. models
- Rich γγ physics at LHC: see papers by C. Baldenegro, S. Fichet, M. Saimpert, G. Von Gersdorff, E. Chapon, O. Kepka, CR... Phys.Rev. D89 (2014) 114004 ; JHEP 1502 (2015) 165; Phys. Rev. Lett. 116 (2016) no 23, 231801; JHEP 1706 (2017) 142; JHEP 1806 (2018) 131

$\gamma\gamma$ exclusive production: SM contribution

- QCD production dominates at low $m_{\gamma\gamma}$, QED at high $m_{\gamma\gamma}$
- Important to consider W loops at high $m_{\gamma\gamma}$
- At high masses (> 200 GeV), the photon induced processes are dominant
- Conclusion: Two photons and two tagged protons means photon-induced process

Motivations to look for quartic $\gamma\gamma$ anomalous couplings

• Two effective operators at low energies

$$\mathcal{L}_{4\gamma} = \zeta_1^{\gamma} F_{\mu\nu} F^{\mu\nu} F_{\rho\sigma} F^{\rho\sigma} + \zeta_2^{\gamma} F_{\mu\nu} F^{\nu\rho} F_{\rho\lambda} F^{\lambda\mu}$$

• $\gamma\gamma\gamma\gamma$ couplings can be modified in a model independent way by loops of heavy charged particles $\zeta_1 = \alpha_{em}^2 Q^4 m^{-4} N c_{1,s}$ where the coupling depends only on $Q^4 m^{-4}$ (charge and mass of the charged particle) and on spin, $c_{1,s}$ depends on the spin of the particle This leads to ζ_1 of the order of 10^{-14} - 10^{-13}

Motivations to look for quartic $\gamma\gamma$ anomalous couplings

• Two effective operators at low energies

$$\mathcal{L}_{4\gamma} = \zeta_1^{\gamma} F_{\mu\nu} F^{\mu\nu} F_{\rho\sigma} F^{\rho\sigma} + \zeta_2^{\gamma} F_{\mu\nu} F^{\nu\rho} F_{\rho\lambda} F^{\lambda\mu}$$

• ζ_1 can also be modified by neutral particles at tree level (extensions of the SM including scalar, pseudo-scalar, and spin-2 resonances that couple to the photon) $\zeta_1 = (f_s m)^{-2} d_{1,s}$ where f_s is the $\gamma \gamma X$ coupling of the new particle to the photon, and $d_{1,s}$ depends on the spin of the particle; for instance, 2 TeV dilatons lead to $\zeta_1 \sim 10^{-13}$

One aside: what is pile up at LHC?

can be faked by one collision with 2 photons and protons from different collisions

- The LHC machine collides packets of protons
- Due to high number of protons in one packet, there can be more than one interaction between two protons when the two packets collide
- Typically up to 50 pile up events

Search for quartic $\gamma\gamma$ anomalous couplings

- Search for $\gamma\gamma\gamma\gamma\gamma$ quartic anomalous couplings
- Couplings predicted by extra-dim, composite Higgs models
- Analysis performed at hadron level including detector efficiencies, resolution effects, pile-up...
- Anomalous coupling events appear at high di-photon masses
- S. Fichet, G. von Gersdorff, B. Lenzi, C.R., M. Saimpert ,JHEP 1502 (2015) 165

Search for quartic $\gamma\gamma$ anomalous couplings

 No background after cuts for 300 fb⁻¹: sensitivity up to a few 10⁻¹⁵, better by 2 orders of magnitude with respect to "standard" methods

 Exclusivity cuts using proton tagging needed to suppress backgrounds (Without exclusivity cuts using CT-PPS: background of 80.2 for 300 fb⁻¹)

Search for axion like particles

- Production of ALPs via photon exchanges and tagging the intact protons in the final state complementary to the usual search at the LHC (*Z* decays into 3 photons): sensitivity at high ALP mass, C. Baldenegro, S. Fichet, G. von Gersdorff, C. Royon, ArXiv 1803.10835, JHEP 1806 (2018) 131
- Complementarity with Pb Pb running: sensitivity to low mass diphoton, low luminosity but cross section increased by Z⁴

- Production of ALPs via photon exchanges in heavy ion runs: Complementarity to *pp* running
- Sensitivity to low mass ALPs: low luminosity but cross section increased by Z⁴, C. Baldenegro, S. Hassani, C.R., L. Schoeffel, ArXiv:1903.04151
- Similar gain of three orders of magnitude on sensitivity for γγγZ couplings in pp collisions:
 C. Baldenegro, S. Fichet, G. von Gersdorff, C. R., JHEP 1706 (2017) 142

Full $\gamma\gamma\gamma\gamma\gamma$ amplitude calculation

- Effective field theory valid if $S << 4m^2$, S smaller than the threshold production of real particles
- Since the maximum proton missing mass is ~ 2 TeV at the 14 TeV LHC, the effective theory needs to be corrected for masses of particles below ~ 1 TeV \rightarrow use of form factor which creates an uncertainty on the results (depends on the exact value of form factors)
- Solution: compute the full momentum dependence of the 4 photon amplitudes: computed for fermions and bosons
- Full amplitude calculation for generic heavy charged fermion/vector contribution
- Existence of new heavy charged particles enhances the $\gamma\gamma\gamma\gamma$ couplings in a model independant way
- Enhancement parametrised with particle mass and effective charge $Q_{eff} = QN^{1/4}$ where N is the multiplicity

Full $\gamma\gamma\gamma\gamma\gamma$ amplitude calculation

Cut / Process	Signal (full)	Signal with (without) f.f (EFT)	Excl.	DPE	DY, di-jet + pile up	$\gamma\gamma$ + pile up
$[0.015 < \xi_{1,2} < 0.15, \ p_{\mathrm{T1},(2)} > 200, (100) \ \mathrm{GeV}]$	130.8	36.9 (373.9)	0.25	0.2	1.6	2968
$m_{\gamma\gamma} > 600 { m ~GeV}$	128.3	34.9 (371.6)	0.20	0	0.2	1023
$[p_{\mathrm{T2}}/p_{\mathrm{T1}}>0.95,\ \Delta \phi >\pi-0.01]$	128.3	34.9 (371.4)	0.19	0	0	80.2
$\sqrt{\xi_1\xi_2s} = m_{\gamma\gamma} \pm 3\%$	122.0	32.9(350.2)	0.18	0	0	2.8
$ y_{\gamma\gamma} - y_{pp} < 0.03$	119.1	31.8 (338.5)	0.18	0	0	0

- No background after cuts for 300 fb^{-1} without needing timing detector information
- For signal: 119.1 events for $Q_{eff} = 4$, m = 340 GeV
- Results for full calculation lay between the effective field result with/without form factor as expected since effective calculation not valid in the region of $S \sim m^2$

Full amplitude calculation

• 5 σ sensitivity for new charged fermions and vector bosons for 300 fb^{-1} and $\mu = 50$

Mass (GeV)	300	600	900	1200	1500
$Q_{\rm eff}$ (vector)	2.2	3.4	4.9	7.2	8.9
$Q_{\rm eff}$ (fermion)	3.6	5.7	8.6	-	-

- Unprecedented sensitivites at hadronic colliders. We also display the result of effective field theory (without form factor) which deviates at low masses from the full calculation
- For Q_{Jeff} = 4, we are sensitive to new vectors (fermions) up to 700 (370)
 GeV for a luminosity of 300 fb⁻¹

$\gamma\gamma\gamma\gamma Z$ quartic anomalous coupling

- Look for $Z\gamma$ anomalous production
- Z can decay leptonically or hadronically: the fact that we can control the background using the mass/rapidiy matching technique allows us to look in both channels (very small background)
- Leads to a very good sensitivity to $\gamma\gamma\gamma Z$ couplings

$\gamma\gamma\gamma\gamma Z$ quartic anomalous coupling

- C. Baldenegro, S. Fichet, G. von Gersdorff, C. Royon, JHEP 1706 (2017) 142
- Best expected reach at the LHC by about three orders of magnitude
- Advantage of this method: sensitivity to anomalous couplings in a model independent way: can be due to wide/narrow resonances, loops of new particles as a threshold effect

SM observation and anomalous couplings studies in WW events

 Possible observation of WW exclusive production at high mass: study all decay channels, 2 "fat" jets, 1 lepton + 1 "fat" jet, 2 leptons

- SM prediction on exclusive WW (leptonic decays) after selection: about 50 events for 300 fb⁻¹ (2 background)
- 1st possible observation at high mass
- Anomalous coupling: Use hadronic channels

- For an anomalous coupling of 10⁻⁶ GeV⁻², we expect about 110 events for a background of 87 due to pile up events
- Sensitivity down to $3.7 \ 10^{-7} \ \text{GeV}^{-2}$ (present limits using exclusive production of *WW* at medium luminosity (low pile up) without proton tagging led to limits of $\sim 10^{-4} \ \text{GeV}^{-2}$)
- JHEP 2012 (2020) 165, C. Baldenegro, G. Biagi, G. Legras, C.R.

Trilinear γWW anomalous gauge couplings

- Search for anomalous $WW\gamma$ couplings
- References: O.Kepka, C. Royon, Phys. Rev. D 78 (2008) 073005; E. Chapon, O. Kepka, C. Royon, Phys. Rev. D78 (2008) 073005

• Lagrangian with trilinear gauge $WW\gamma$ anomalous couplings λ^γ and $\Delta\kappa^\gamma$

$$\mathcal{L}~\sim~(W^{\dagger}_{\mu
u}W^{\mu}A^{
u}-W_{\mu
u}W^{\dagger\mu}A^{
u})+(1+\Delta\kappa^{\gamma})W^{\dagger}_{\mu}W_{
u}A^{\mu
u}+rac{\lambda^{\gamma}}{M^{2}_{W}}W^{\dagger}_{\
u}A^{
u
ho}$$

• Signal appears at high mass for λ^{γ} , and $\Delta \kappa^{\gamma}$ only modifies the normalisation and the low mass events have to be retained

• for $\Delta \kappa^{\gamma}$:

• for λ^{γ} :

 $p_T^{lep1} > 160~{\rm GeV} \ , \not\!\!\! E_T > 20~{\rm GeV} \ , \ W > 800~{\rm GeV} \ , \ M_{ll} \notin \langle 80, 100 \rangle \ GeV, \ \Delta \phi < 3.13 rad$

Trilinear γWW anomalous gauge couplings

- Different behaviour of the cross section as a function of anomalous couplings
- Measurement of *WW* events at high luminosities at LHC, 2*W* events and protons tagged in forward detectors
- Reach on anomalous coupling at the LHC using a luminosity of 200 $\rm fb^{-1}$
 - 5 σ discovery: $-0.26 < \Delta \kappa^{\gamma} < 0.16; -0.053 < \lambda^{\gamma} < 0.049$
 - 95% CL limit: $-0.096 < \Delta \kappa^{\gamma} < 0.057; -0.023 < \lambda^{\gamma} < 0.027,$
- Best reaches before ILC, which can be improved using semi-leptonic decays of Ws

Exclusive $t\bar{t}$ production

- Search for $\gamma\gamma t\bar{t}$ anomalous coupling in leptonic and semi-leptonic decays (the QCD diagram in the middle does not contribute)
- High background due to standard non exclusive $t\bar{t}$ production and protons from pile up
- C. Baldenegro, A. Bellora, S. Fichet, G. von Gersdorff, M. Pitt, CR arXiv:2205.01173

Additional method to remove pile up: Measuring proton time-of-flight

- Measure the proton time-of-flight in order to determine if they originate from the same interaction as the selected photon
- Typical precision: 10 ps means 2.1 mm
- Idea: use ultra-fast Si Low Gain Avalanche Detectors (signal duration of ∼few ns and possibility to use fast sampling to reconstruct full signal)

- Search for $\gamma\gamma t\bar{t}$ anomalous coupling in semi-leptonic decays with 300 fb⁻¹
- Use similar selection: high $t\bar{t}$ mass, matching between pp and $t\bar{t}$ information
- Use fast timing detectors to suppress further the pile up background
- C. Baldenegro, A. Bellora, S. Fichet, G. von Gersdorff, M. Pitt, CR arXiv:2205.01173

Coupling $[10^{-11} \text{GeV}^{-4}]$	$95\%~{ m CL}$	5σ	$95\%{ m CL}(60{ m ps})$	$5\sigma \ (60 \mathrm{ps})$	$95\%{ m CL}(20{ m ps})$	$5\sigma \ (20 \mathrm{ps})$
ζ_1	1.5	2.5	1.1	1.9	0.74	1.5
ζ_2	1.4	2.4	1.0	1.7	0.70	1.4
ζ_3	1.4	2.4	1.0	1.7	0.70	1.4
ζ_4	1.5	2.5	1.0	1.8	0.73	1.4
ζ_5	1.2	2.0	0.84	1.5	0.60	1.2
ζ_6	1.3	2.2	0.92	1.6	0.66	1.3

Conclusion

- LHC can be seen as a $\gamma\gamma$ collider!
- $\gamma\gamma\gamma\gamma\gamma$, $\gamma\gamma ZZ$, $\gamma\gamma WW$, $\gamma\gamma\gamma\gamma Z$ anomalous coupling studies and SM observation
 - Exclusive process: photon-induced processes $pp \rightarrow p\gamma\gamma p$ (gluon exchanges suppressed at high masses)
 - Theoretical calculation in better control (QED processes with intact protons), not sensitive to the photon structure function
 - "Background-free" experiment and any observed event is signal
 - NB: Survival probablity in better control than in the QCD (gluon) case
- CT-PPS/AFP allow to probe BSM diphoton production in a model independent way
- Sensitivity to ALPs: Improvement by more than one order of magnitude
- Complementarity between pp, pA, AA runs

