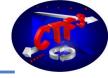

 \odot Beam instrumentation effort for the Conceptual Design Effort

Beam Instrumentation Effort for the Project Preparation Phase

O CERN-UK BI Activities



Relatively small group at CERN relying on external collaborations !!

CTF3 BI Collaboration

• INFN Frascati :

Beam instrumentation for Magnetic Chicane and DL and CR - (RF deflector and BPMs)

- Uppsala University : TBTS instrumentation Development RF pick-up to monitor the accuracy of the frequency multiplication in DL and CR
- RHUL : Development of Coherent Diffraction monitor for bunch length measurements on CTF3
- Northwestern University of Illinois: Development of cost effective bunch length monitor for Drive Beam Complex
- CEA Saclay : Califes beam instrumentation The design of re-entrant cavity BPM on Califes / Wakefield monitor design
- LAPP Annecy: Development of the Electronic module
- IFIC Valencia :

Development of the CTF3 Test Beam Line inductive BPM and CLIC Drive Beam BPM body

Since 2008 – Preparation of the Conceptual Design Report
 Collect requirements: Overview on the CLIC needs (200kms of beam lines and more than 50000 instruments specified)

 Open discussion with experts to define a road map for feasibility demonstration
 Beam Instrumentation workshop in June 2009 – 2days and ~50 participants

• Define Baseline CLIC instrumentation with appropriate technology choice

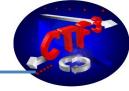
 Propose and study Alternative solutions which would impact either on cost or performance

 Look for standardization and technological developments for cost reduction and/or an improved reliability and maintenance

CDR is done \sim 20 Contributors for beam instrumentation

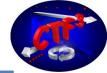
chapter and ~60 pages document

CLIC Project Preparation phase

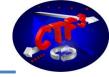


2011-16

- ✓ Technical design for key Beam Instruments
- ✓ First step of Industrialization phase: Cost and schedule
- \checkmark Follow-up on technical implementation and operation scheme
- <u>WP 1: Refinement of specifications</u>
 - R&D on Beam intensity, polarisation, luminosity measurements
 - Follow-up on Damping rings instrumentation development in collaboration with B factories and light sources
- <u>WP 2: Beam Position Monitor designs</u>
 - Design and test of CLIC type BPMs (MB and DB)
 - Wakefield simulations
- WP 3: Long. & Tr. Emittance measurements:
 - Desig, implementation and test of CLIC type emittance measurements
 - Development of cheaper alternative solutions
- <u>WP 4: Beam loss monitors</u>
 - In collaboration with the Machine protection working group finalize the specifications for the BLMs
 - Monte carlo Simulations
 - Develop a BLM only sensitive to charged particle for the Damping rings
 - Develop and Qualify a cost effective detector technology for CLIC modules

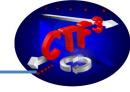


CERN-UK BI workpackages


Beam Position Monitors

Machine Sub-Systems	Intensity (A)	Train duration (ns) / Bunch frequency (GHz)	Accuracy / Resolution (um)	Time Resolution (ns)	Quantity	Beam aperture (mm)		
Main Beam								
e ⁻ & e ⁺ injector Complex	0.5	156 / 1	100 / 50	10	83	40		
Pre-Damping Rings	0.5	156 / 1	tbd./ 20	10	600	20 / 9		
				Turn by turn				
Damp High accuracy	(5um) res	olution (50nm) BPI	M in Main Lin	ac and BDS	500	20 / 9		
RTML	1	156 / 2	100 / 10	10	1424	various		
Main Linac	1	156 / 2	5/0.05	10	4196			
Beam Delivery System	1	156 / 2	5 / 0.05	10	600			
Spent Beam Line	1	156 / 2	tbd / 1000	100	12	various		
Various range of bea	am nine d	iameters from 4mn	n to 200 mm					
-	• •				660	40		
over the complex (t	o minimiz	e resistive wakefield	d effects)		210	80		
Complex		0.5 → 12						
Transfer to Tunnel	100	24 x 240ns / 12	40 / 10	10	872	200		
Turn around	100	240ns / 12	40 / 10	10	1920	40		
Decelerator	100	240ns / 12	20 / 2	10	41484	26		
Dump lines	100	240ns / 12	20 / 2	10	96	40		
Very hig	n numbers	s of BPMs for the D	B decelerator			V		

Beam Position Monitors

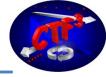


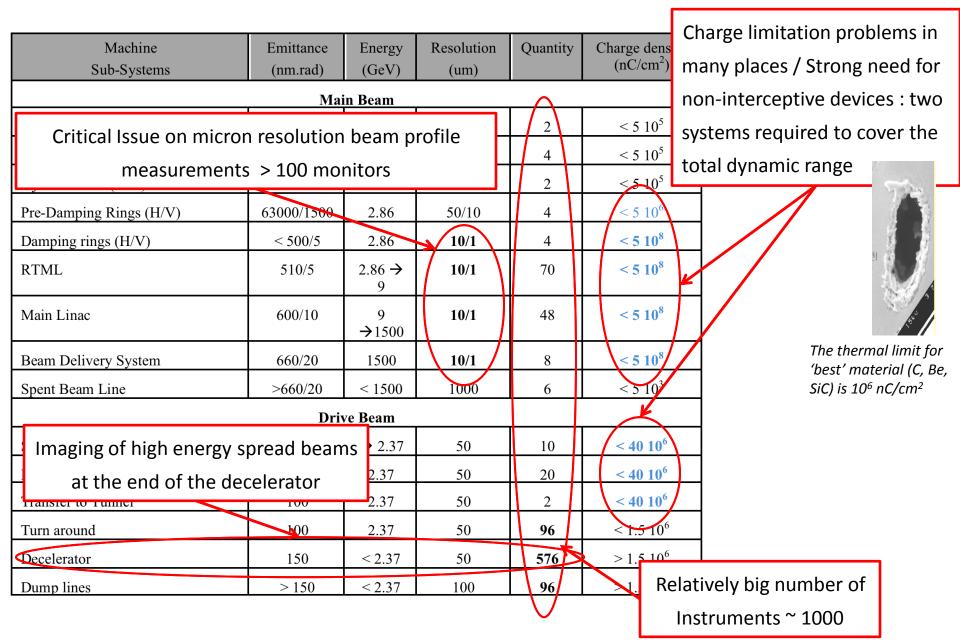
Main	RF-Feedthrough			
Machine	Quantity Technolog		ogy choice	Monopole Mode Reference Cavity Waveguides
Sub-Systems		Pick-up	Processor	
	N	Aain Beam		
e ⁻ & e ⁺ injector Complex	83	Button 6mm	Direct samplir	710621,50
Pre-Damping rings	600	Button 6mm	DR type	
Damping rings	600	Button 6mm	DR type	
RTML	1424	Button 6mm	Direct samplir	BPM Dipole Mode Cavity
Main Linac and Beam Delivery system	4796		Cavity type	BPM Dipole B Mode Cavity B Mode Cavity
Spent Beam Line	12	Button / Strip line	Direct sampling	
	Ľ	Drive Beam	1	
DB source and Linac	660	Button 6mm	Downconvertin	
Frequency multiplication complex	210	Button 6mm	Downconverting	g CERN
Transfer to tunnel	872	Button 6mm	Direct sampling	, CERN
Turn-arounds	1920	Button 6mm	Direct sampling	g CERN
Decelerator	41484	Stripline 25mm	Downconverting	g CERN
Dump lines	96	Stripline 25mm	Downconverting	g CERN

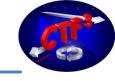
Followed-up by RHUL

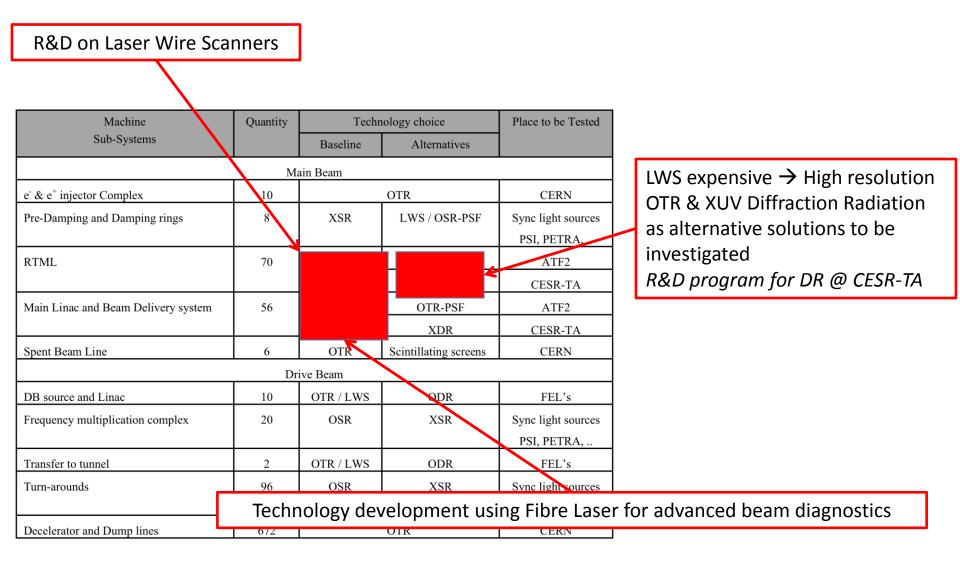
BI workpackage – Task 2

WP: CTC-006	Purpose/Objectives/Goals	Deliverables
Task 2: BPM development	 Demonstrate the high resolution of CLIC cavity BPM prototype (linac and BDS) and its read-out electronic - lab and beam test RF simulations for estimation of wakefield effects and interference due 	 Prototype of 14GHz cavity BPM Engineering specifications and
	to the presence of high field in PETS and Acc. Cav.	cost estimate


Ressources	2011	2012	2013	Total
Total P (FTE)	3.3	3.6	2.6	9.5
FTE from M>P	1	1.8	1.8	4.6
UK FTE ressources	1.7	1.2	0.2	3.1
CERN-UK FTE ressouces	0	0.8	0.8	1.6
CERN FTE	0.6	0.6	0.6	1.8
CERN-UK M budget (kCHF)		20	20	40


✓ Lars Soby (CERN) – S. Boogert (RHUL) – M. Wendt (FNAL) – S. Smith (SLAC)


✓One project associate based at CERN


- ✓ 50% Manpower resources in the UK
- \checkmark M to P budget in M ~ 50% / Few CERN staffs part-time
- ✓ Small amount of Material budget: Production of BPM's is not covered by this nudget

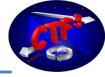
Transverse Profile Monitors

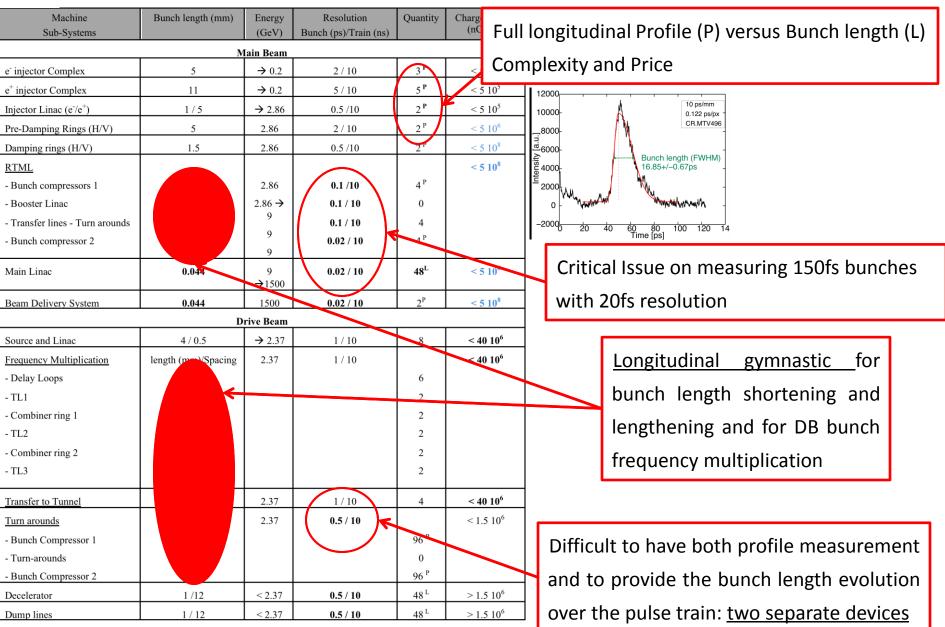
Followed-up by RHUL

BI workpackage – Task 3

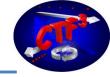
WP: CTC-006	Purpose/Objectives/Goals	Deliverables
Task 3: Emittance measurement	- Design and integration of Laser Wire Scanner in BDS and Drive Beam complex	- Experimental validation of a CLIC Laser Wire Scanner on ATF2 with BPM
	- Technology development for high power fibre laser	- Experimental validation of a CLIC UV DR monitor on CESRTA
	- Study alternative option for high spatial resolution non- destructive profile monitors (UV Diffraction radiation)	 Engineering specifications and cost estimate

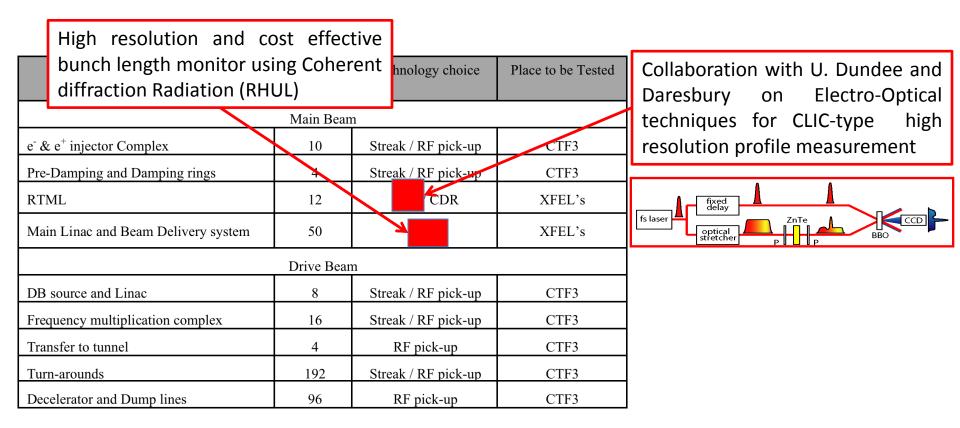
Ressources	2011	2012	2013	Total
Total P (FTE)	2.75	3.4	3.5	9.65
FTE from M>P	0.5	2.4	2.75	5.65
UK FTE ressources	2.15	0.9	0.65	3.7
CERN-UK FTE ressouces	0	1.4	1.75	3.15
CERN FTE	0.1	0.1	0.1	0.3
CERN-UK M budget (kCHF)	50	60	55	165


✓ CERN (T. Lefevre) – RHUL (G. Blair, S. Boogert , P. Karataev et al) – CESRTA (M. Palmer, M. Billing)
 ✓ A CERN Ph.D Student starting in mid 2011 to work on Diffraction Radiation


✓ More than 70% Manpower resources based in the UK

 \checkmark M to P budget in M ~ 60% / Very limited CERN Manpower resources


✓ Upgrade on the laser system and the experimental part of the DR test are not financed through this budget


Longitudinal Profile Monitors

Longitudinal Profile Monitors

Followed-up by U. Dundee

BI workpackage – Task 3

WP: CTC-006	Purpose/Objectives/Goals	Deliverables
Task 3: Emittance measurement	 Development of 20fs time resolution longitudinal profile monitor using EO techniques 	- Prototype on Cailfes at CTF3
	- Improved single shot XFROG technique for signal decoding	 Test of CLIC prototype on a short bunch length facility
	- Development of new E-O Crystals	-Engineering specifications and cost estimate

Ressources	2011	2012	2013	Total
Total P (FTE)	2.4	2.4	2.4	7.2
FTE from M>P	1	1.5	2	4.5
UK FTE ressources	0.3	0.3	0.3	0.9
CERN-UK FTE ressouces	1	1	1	3
CERN FTE	1.1	0.6	0.1	1.8
CERN-UK M budget (kCHF)	50	100	75	225

✓ CERN (T. Lefevre) – U. Dundee (A. Gillespie) & Daresbury (S. Jamison)

✓ CERN fellow (Marie-Curie till Mid 2012 and then M--P)

✓ More than 50% of Manpower resources in UK

✓ M to P budget in M > 60% / Limited CERN Manpower resources

✓ New UK-based project associate

✓ Development for CTF3/Califes is not covered by this budget

Thanks for your attention