CLIC Cavity Beam Position Monitors

S. T. Boogert, F. Cullinan, N. Joshi, A. Lyapin John Adams Institute at Royal Holloway https://www.pp.rhul.ac.uk/twiki/bin/view/JAI/BeamPosition

Introduction

- ATF2 Cavity BPM system (C-band, ILC-like)
 - System performance
 - Multi-bunch studies with High-Q cavity
 - Bunch subtraction
- Low-Q CLIC BPM (FNAL) simulations
 - Wake-fields (GdfidL, ACE3P)
- Quadrupole stabilisation studies
 - Idea from Steve Smith
 - Extreme resolution BPMs (<1 nm)

Accelerator test facility

Test system for 35 nm focus size

ATF2 Overview (instrumentation)

- Very dense with instrumentation
 - 2 independent emittance diagnostic systems (3 axis wires, OTR)
 - 2 independent IP systems (BPMs, IPBSM)

Cavity position monitor system

S-band BPMs C-band BPMs (movers) (movers)

Strip line/Cavity BPMs (rigid)

Jitter subtracted calibration

 Use MIA/SVD to measure beam jitter subtracted calibration constants (remote operation)

IP calibration 20110202 (035952)

bpmAllLog 20110202 035952

SB

Multi-bunch studies

- ATF2 cavities designed for single bunch operation
 - 3 Bunches overlapping within cavity
 - Attempt to extract amplitude and phase from each bunch transit

N. Joshi

- 3 bunches with separation of 150 ns.
 - Signal decay time ~300 ns. (ILC bunch separation)
 - Correction seems appropriate
 - Large increase in jitter

Multi-bunch studies (simulated)

N. Joshi

- Apply subtraction technique on simulated data
 - Initial cavity and beam parameters similar to measurement
 - Correction does not increase signal jitter

-ATF2 group

- 11th March 2011, 2:46:23
- 320 km, 8 km/s gives 46 s propagation time
- Beam manually aborted
- ATF damage comparatively light.

N. Joshi

- Beam loading of BPM
- How to treat data with significant bunch overlap
- Simulate
 CLIC beam
 train through
 cavity and
 representativ
 e electronics

RF simulation work flow

JAI @ RHUL group

- Use two different simulation codes
 - GdfidL (A. Lyapin)
 - ACE3P (N. Joshi)
- Merge work flow with single model
 - Developed in Qubit
 - Exported via standard files

CLIC BPM design

M. Wendt (FNAL)

- FNAL conceptual design and prototype being fabricated
- Low-Q, fabricated from stainless steel
- Standard cavity, magnetically coupled monopole suppressing
- Start with simulation of this cavity

Low-Q simulations

N. Joshi

- FNAL-CERN design, geometry in Cubit, eigenmode solution in Omega3P.
 - Adding feedthroughs now

-1000

Monopole:

Frequency: II.I4 GHz

 $\circ Q_0$:421.96

○ R/Q _{Imm} :46.41 ∧

Dipole:

o Frequency: 14.988 GHz

 $\circ Q_0$:517.89

 \circ R/Q_{1mm} :3.4 \wedge

Low-Q simulations

N. Joshi

- Started time-domain simulations for wake field
 - Need to compare with GdfidL
 - Pass information onto beam dynamics people

QuickTime™ and a

Motion JPEG OpenDML decompress or
are needed to see this picture.

GdfidL Wake-fields

Quadrupole stabilisation

F. Cullinan

- Monitor beam after passage through quadrupole (< 1nm RMS, down to ~ 1 Hz)
 - Determine jitter introduced by quad
 - BPM resolution ~1 nm
- Consider quasi-CW beam test (JLAB)
- Interest in
 - BPM
 - Readout and analysis
 - Measurement scheme

BPM triplets

BPM triplets

Issues... Geometry, inter BPM calibration, beam jitter (position, angle & energy),

Quadrupole stabilisation

- Strong similarities with ATF2 project/problems
 - Quad alignment
 - Jitter constant 20% of beam size
 - Effect of quad-fields on each BPM
- Also strong similarities with ESA programme
 - BPM resolution significantly worse (~500 nm)
 - ~20 m length systems
- Is such a test desirable?

Near term work

- Based on discussions last month
 - Evaluate performance of FNAL-CERN prototype
 - Analyse possible improvements based on ATF2/Diamond BPMs
 - Assess the ambient temperature change effect (20 degrees is a lot)
 - Modified/alternative design
 - Higher-Q
 - Investigate stabilisation studies with high resolution BPMs
 - Test beam electronics

Longer term work

- Involvement in BPM triplet tests in CERN
 - Single bunch resolution is easily achieved
 - Critical test is 3 BPMs with CLIC like bunch structure
- Alternative processing schemes
 - Hardware subtraction of previous signal
 - FFT based analysis, statistical, ensemble approach
- Electronics processing scheme
- Requirements for CLIC, integrated diagnosticsbeam dynamics studies

Summary

- Started already defining focus and work plan
 - Will evolve strongly over next year
- Propose to
 - Check existing (FNAL) design
 - Concrete processing scheme (proper treatment of signals)
 - Involvement in test beam validation of prototypes
 - Alternative design, higher Q, combined with processing scheme (RF and digital)
 - Optimisation of performance, location, usage (calibration etc)