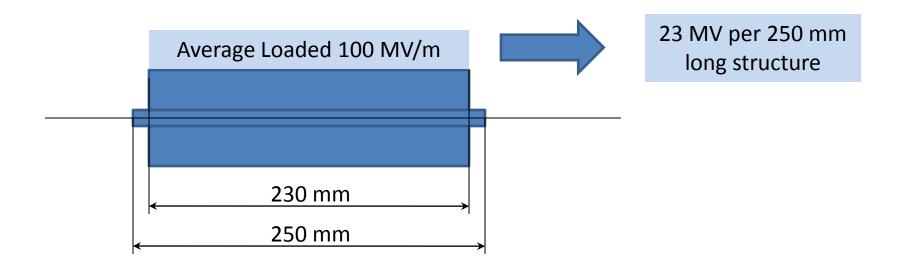
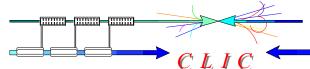
Specific requirements for CLIC RF structures

A.Grudiev (CERN)

CERN-UK Kick-off meeting

13 April 2011


Outline


- CLIC main linac accelerating structure (AS)
- CLIC crab-cavity (CC)

N.B. Most of the information is already well known to our UK collaborators. Even more, for the crab-cavity, most of it came form them! Nevertheless, it is an attempt to summarize it and to get common understanding of the problems.

Acknowledgements to D. Schulte and R. Thomas for useful discussions

CLIC AS layout and space constraints

Optimization constraints for CLIC_G

Beam dynamics (BD) constraints based on the simulation of the main linac, BDS and beam-beam collision at the IP:

- N bunch population depends on $\langle a \rangle / \lambda$, $\Delta a / \langle a \rangle$, f and $\langle E_a \rangle$ because of short-range wakes
- N_s bunch separation depends on the long-range dipole wake and is determined by the condition:

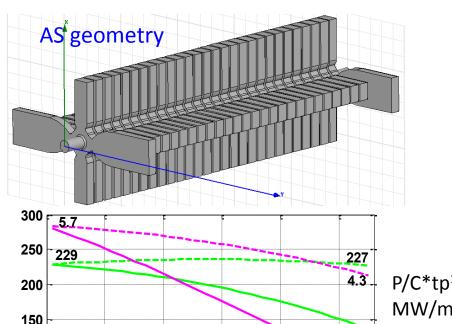
 $W_{t,2} \cdot N / E_a = 10 V/pC/mm/m \cdot 4x10^9 / 150 MV/m$

RF breakdown and pulsed surface heating (rf) constraints:

- $\Delta T^{\text{max}}(H_{\text{surf}}^{\text{max}}, t_{\text{p}}) < 56 \text{ K}$
- E_{surf}^{max} < 250 MV/m
- $P_{in}/C_{in} \cdot (t_p^P)^{1/3} < 18 \text{ MW/mm} \cdot ns^{1/3}$

These constraints have been used in 2008 in the design of the CLIC baseline structure: CLIC_G.

50 K


220 - 250 MV/m

15 - 17 MW/mm·ns^{1/3}

 $Sc < 4 - 4.5 \text{ MW/mm}^2$

These are the values which correspond to the current (2011) understanding of the RF breakdown constraints

CLIC baseline AS for the CDR

P/C*tp^{1/3} = **17** MW/mm*ns^{1/3}

119

25

iris numberThe fundamental mode properties are shown.

15

The traces from top to bottom are:

 S_c ·40 [W/ μ m²](pink),

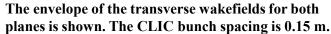
118

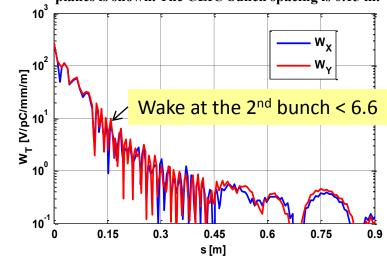
47.1

100

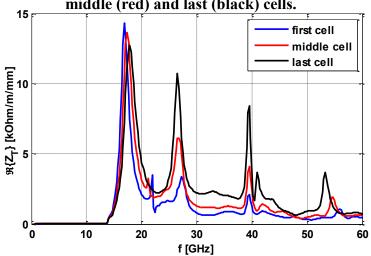
Surface electric field [MV/m](green),

Accelerating gradient [MV/m](red),

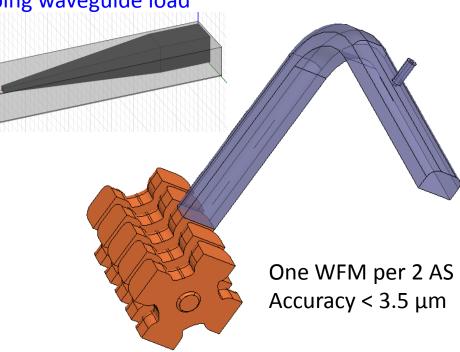

Pulse surface temperature rise [K](blue).


Dashed traces are unloaded and solid are beam loaded conditions

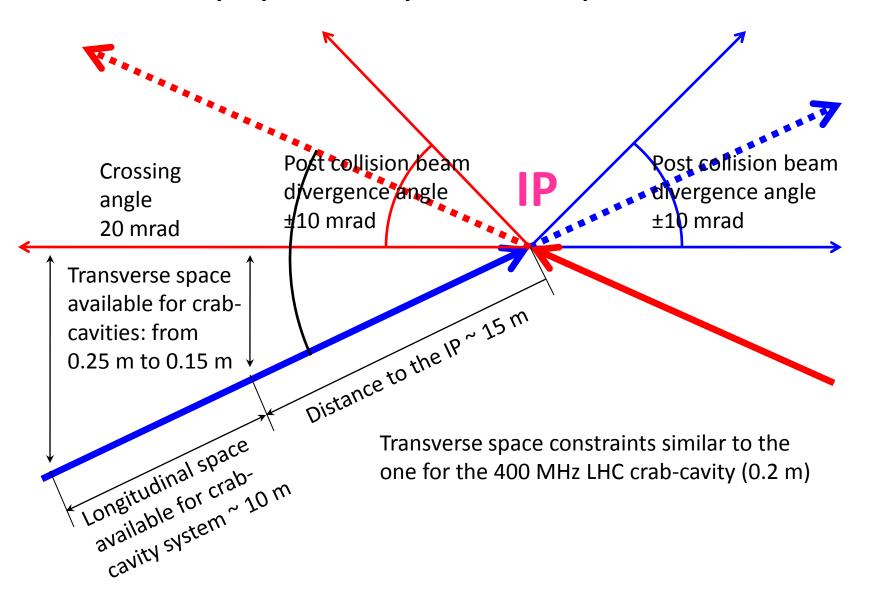
20


Average loaded accelerating gradient	100 MV/m	
Frequency	12 GHz	
RF phase advance per cell	$2\pi/3$ rad.	
Average iris radius to wavelength ratio	0.11	
Input, Output iris radii	3.15, 2.35 mm	
Input, Output iris thickness	1.67, 1.00 mm	
Input, Output group velocity	1.65, 0.83 % of <i>c</i>	
First and last cell <i>Q</i> -factor (Cu)	5536, 5738	
First and last cell shunt impedance	81, 103 MΩ/m	
Number of regular cells	26	
Structure length including couplers	230 mm (active)	
Bunch spacing	0.5 ns	
Bunch population	3.7×10 ⁹	
Number of bunches in the train	312	
Filling time, rise time	66.7 ns, 21 ns	
Total pulse length	243.7 ns	
Peak input power	61.3 MW	
RF-to-beam efficiency	27.7 %	
Maximum surface electric field	230 MV/m	
Maximum pulsed surface heating temperature rise	47 K	

CLIC baseline AS for the CDR


Transverse impedances of the first (blue), middle (red) and last (black) cells.

Parameters of the lowest dipole-band modes


Cell	First	Middle	Last
Q-factor	11.1	8.7	7.1
Amplitude [V/pC/mm/m]	125	156	182
Frequency [GHz]	16.91	17.35	17.80

Damping waveguide load

Geometry of one of the four arms of the wakefield monitor. (Courtesy of F. Peauger, CEA, France).

Crab-cavity system layout and space constraints

CLIC parameters and specifications for the CC system

Relevant CLIC parameters:

- Beam energy at the IP: E0 = 1.5 TeV
- Crossing angle: $\theta_c = 20 \text{ mrad}$
- Beam normalized emittance: $\varepsilon_x = 660 \text{ nm}$, $\varepsilon_y = 20 \text{ nm}$
- Beta-function at the position of CC system: β_CC ≈ 100 km
- => Beam spot size at the position of the CC: $\sigma_x \approx 150 \, \mu m$, $\sigma_y \approx 25 \, \mu m$

Specifications for CC system:

- Frequency: $f = n \cdot 2$ GHz, n = 1,2,3,4,5,6,
- Kick strength versus frequency:

Vt * f =
$$\theta$$
 c·E0·c/2 π R12 \approx **2.5 MV** * **12 GHz** = **7.5 MV** * **4 GHz**

- Maximum beam offset horizontal: $dx \approx 4\sigma_x \approx 0.6 \text{ mm}$
- Maximum beam loading: VI = dx * $\theta_c \cdot E0/R12 \approx 370 \text{ kV}$ Can be relaxed to

=> peak: Pb = Ib * VI ≈ **0.4 MW**

=> average: <Pb> = Pb * 50Hz*156ns ≈ **3 W**

Can be relaxed to ½ if it is critical

- Kick amplitude and time stability: 2 % and 5 for 2 % Luminosity reduction (CLIC CDR, Crab-cavity system)
- RF constraint for AS design can be applied here to be verified with high power test

Wakefields in the CC system

- No detailed beam dynamics (BD) simulations have been done at CERN on the acceptable level of the wakefields from the CC system
- It is very desirable (In my opinion, absolutely necessary) to do the BD study in order to get the acceptable level of the wakefields in the CC system.
- Below, an attempt to estimate the threshold level for the long-range wakefields (probably the most critical ones) is presented.

Multi-banch wake field effect is proportional to

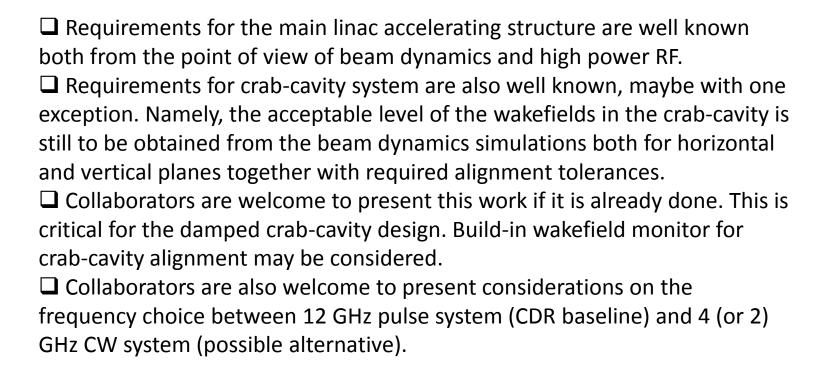
$$W_t Ne^2 \int \frac{\beta(s)ds}{2E(s)};$$

D. Schulte, PAC09

For the main linac: $<\beta(s)> \sim sqrt(E(s))$; E goes linear from 9 to 1500 GeV => integral $\approx 380 \text{ m}^2/\text{GeV}$ (D. Schulte) $W_t@2^{nd}$ bunch $< 6.6 \text{ kV/pCm}^2$, and "no" wake for the others

For the CC system: $\langle \beta \rangle = 100$ km; E = 1500 GeV

=> integral ≈ L_CC*33 m²/GeV; about 10 times smaller for 1 m long CC


If undamped: $L_{CC}^*W_t = L_{CC}^*W_{t0} = 1m^* 66 \text{ kV/pCm}^2 / (312/2) \text{ bunches } \approx 1m^* 0.4 \text{ kV/pCm}^2$

12 GHz CC: Typical level of $W_{t0} \approx 50 \text{ kV/pCm}^2$; $L_{CC} \approx 1/4\text{m}$; strong damping is needed

4 GHz CC: Typical level of $W_{t0} \approx 2 \text{ kV/pCm}^2$; $L_{CC} \approx 10 \text{m}$; some damping is needed (?)

2 GHz CC: Typical level of $W_{t0} \approx 1/4 \text{ kV/pCm}^2$; $L_{CC} \approx 20\text{m}$; no damping is needed (?)

Conclusion

