LLP Signatures with Missing Transverse Energy*

LLP Signatures with MET

Roadmap of Dark Matter Models for Run 3 Workshop

* focusing on BSM, not neutrinos

Joey Reichert

Rutgers University joey@cern.ch

May 13, 2024

Experimental considerations

Missing energy ("MET") is challenging:

- Need to understand *every other object* in an event in order to compute it
- Most searches I'll describe use MET triggers and MET \ge 200 GeV, often with other quality requirements (e.g. reject events where MET aligned w/ jet)

Experimental considerations

Missing energy ("MET") is challenging:

- Need to understand *every other object* in an event in order to compute it
- Most searches I'll describe use MET triggers and MET \ge 200 GeV, often with other quality requirements (e.g. reject events where MET aligned w/ jet)

Long-lived particles ("LLPs") are challenging:

• Require custom reconstruction algorithms (that we need to calibrate), often have non-standard backgrounds, and need a deep understanding of our detectors to use them in such unconventional ways

Experimental considerations

Missing energy ("MET") is challenging:

- Need to understand *every other object* in an event in order to compute it
- Most searches I'll describe use MET triggers and MET \ge 200 GeV, often with other quality requirements (e.g. reject events where MET aligned w/ jet)

Long-lived particles ("LLPs") are challenging:

• Require custom reconstruction algorithms (that we need to calibrate), often have non-standard backgrounds, and need a deep understanding of our detectors to use them in such unconventional ways

naturally arise in many BSM theories—*if we don't look, we won't find them*

On the plus side: MET is a key signature of dark matter and SUSY! And LLPs

CMS: Hadronic displaced vertices + MET

Vertex LLP decay points w/ tracks; ther Compressed split SUSY \rightarrow soft decay

Vertex LLP decay points w/ tracks; then suppress SM and material interaction bkgs.

Compressed split SUSY \implies *soft decay products*. May not reconstruct both LLPs!

- $\widetilde{\chi}_1^0$
- $\widetilde{\chi}_1^0$

CMS: Hadronic displaced vertices + MET

Vertex LLP decay points w/ tracks; then suppress SM and material interaction bkgs.

Compressed split SUSY \implies soft decay products. May not reconstruct both LLPs!

Use ≥1-vtx signal region with interaction network

ABCDisCo method (via IN score and n_{tracks})

Joey Reichert (Rutgers)

3

May 13, 2024

CMS: Hadronic displaced vertices + MET

Powerful search techniques: probes production cross sections that are up to *100x smaller* than previous searches, for O(mm) lifetimes.

Light Higgsinos important for naturalness; in scenarios where the lightest EWKinos are pure \tilde{H} or \tilde{W} , expect $\mathcal{O}(100s \text{ MeV})$ splittings and $\mathcal{O}(cm)$ lifetimes

Look for charged particles that leave hits in the tracker before decaying! Rely on well-isolated, high pT chargino track.

Joey Reichert (Rutgers)

LLP Signatures with MET

May 13, 2024

One ATLAS and two CMS searches w/ full Run 2; all also include W interpretations.

One ATLAS and two CMS searches w/ full Run 2; all also include W interpretations.

Most recent CMS search also includes additional production modes / signal models and use of dE/dx + a BDT to separate signal from background.

Joey Reichert (Rutgers)

ATLAS: Soft mildly-displaced tracks + huge MET

Same model, slightly larger mass splittings: search relies on MET > 600 GeV to suppress W/Z+jets and QCD, with track pT \in [2, 5] GeV and Id₀I < 10 mm.

Probes the gap between disappearing track and prompt Higgsino searches!

Heavy charged particles travel slowly and ionize detector *much more* than a MIP.

LLP Signatures with MET

May 13, 2024

Heavy charged particles travel slowly and ionize detector *much more* than a MIP.

Measure dE/dx in silicon tracker based on charge collected: need dedicated calibrations and understanding of detector effects (e.g. radiation damage).

Heavy charged particles travel slowly and ionize detector *much more* than a MIP.

understanding of detector effects (e.g. radiation damage).

Use dE/dx to determine β , and combine w/ track momentum to determine mass:

- Measure dE/dx in silicon tracker based on charge collected: need dedicated calibrations and

Heavy charged particles travel slowly and ionize detector *much more* than a MIP.

understanding of detector effects (e.g. radiation damage).

Use dE/dx to determine β , and combine w/ track momentum to determine mass:

- Measure dE/dx in silicon tracker based on charge collected: need dedicated calibrations and

Heavy charged particles travel slowly and ionize detector *much more* than a MIP.

understanding of detector effects (e.g. radiation damage).

Use dE/dx to determine β , and combine w/ track momentum to determine mass:

- Measure dE/dx in silicon tracker based on charge collected: need dedicated calibrations and

Delayed signatures + MET

Heavy LLPs travel slower than $c \implies$ use ECAL timing to distinguish from SM!

Several searches with delayed y or jets: $\mathcal{O}(100s \text{ picoseconds})$ timing resolution, vs. few ns delay for TeV particle reaching ECAL

Delayed signatures + MET

Heavy LLPs travel slower than $c \implies$ use ECAL timing to distinguish from SM!

Several searches with delayed γ or jets: $\mathcal{O}(100s \text{ picoseconds})$ timing resolution, vs. few ns delay for TeV particle reaching ECAL

- These signals will also have ~no tracks, which gives an extra handle for the jet signatures
- But do need to be careful: cosmics, beam halo, and various instrumental backgrounds must be

CMS: Delayed / trackless jets + MET

High mass: directly require $t_{iet} > 3$ ns and various timing quality criteria.

Joey Reichert (Rutgers)

LLP Signatures with MET

May 13, 2024

CMS: Delayed / trackless jets + MET

High mass: directly require $t_{iet} > 3$ ns and various timing quality criteria.

- Based on timing, # of tracks and energy contributed to jets, and more
- Calibrate tagger efficiency w/ EM objects, timing w/ b-jets, and estimate bkg w/ 1-tagged events

Joey Reichert (Rutgers)

CMS EXO-19-001 CMS EXO-21-014

- Low mass / cross sections: another search tags trackless/delayed ("TD") jets via DNN

Back Layer

Characteristics of photons from LLP decays:

1) Arrive at ECAL with a delay (i.e. use timing info)

Front Layer

Here, LAr Calorimeter proportions have been stretched horizontally 4x

Beamline (z-axis)

Back Layer

Middle Layer

Front Layer

Here, LAr Calorimeter proportions have been stretched horizontally 4x

Characteristics of photons from LLP decays:

1) Arrive at ECAL with a delay (i.e. use timing info)

2) Enter ECAL at atypical angle; elliptical shower shapes

Beamline (z-axis)

ATLAS SUSY-2019-14 ATLAS SUSY-2020-28 CMS EXO-19-005

Characteristics of photons from LLP decays:

1) Arrive at ECAL with a delay (i.e. use timing info)

2) Enter ECAL at atypical angle; elliptical shower shapes

Back Layer

Middle Layer

Front Layer

Here, LAr Calorimeter proportions have been stretched horizontally 4x

Characteristics of photons from LLP decays:

1) Arrive at ECAL with a delay (i.e. use timing info)

2) Enter ECAL at atypical angle; elliptical shower shapes

3) Do not point back to the primary vertex

Beamline (z-axis)

Joey Reichert (Rutgers)

ATLAS SUSY-2019-14 **ATLAS SUSY-2020-28** CMS EXO-19-005

Characteristics of photons from LLP decays:

1) Arrive at ECAL with a delay (i.e. use timing info)

2) Enter ECAL at atypical angle; elliptical shower shapes

3) Do not point back to the primary vertex

Back Layer

Middle Layer

Front Layer

Here, LAr Calorimeter proportions have been stretched horizontally 4x Characteristics of photons from LLP decays:

1) Arrive at ECAL with a delay (i.e. use timing info)

2) Enter ECAL at atypical angle; elliptical shower shapes

3) Do not point back to the primary vertex

If common origin, can vertex Beamline (z-axis) 4) using the ECAL pointing info

Joey Reichert (Rutgers)

LLP Signatures with MET

ATLAS SUSY-2019-14 ATLAS SUSY-2020-28 CMS EXO-19-005

Characteristics of photons from LLP decays:

1) Arrive at ECAL with a delay (i.e. use timing info)

2) Enter ECAL at atypical angle; elliptical shower shapes

3) Do not point back to the primary vertex

If common origin, can vertex 4) using the ECAL pointing info

LLPs and MET each provide powerful handles in BSM searches.

benchmarked our results with other DM models too

See Thursday's dark photon session for a few more LLP + MET searches

• Entirely possible to have BSM signals we could have already seen, if only we'd picked the right trigger!

- Run 2 LLP + MET searches often focused on SUSY scenarios, but we have

With the hard work we put into designing + understanding our LLP reco algorithms, we should include channels w/ large MET whenever possible.

Backup

Joey Reichert (Rutgers)

Snapshot of Run 2 searches for LLPs + MET

- Displaced vertices
- Disappearing tracks
- Soft "mildly displaced" tracks

+ others covered elsewhere in the workshop (e.g. dark photon session), or searches using standard objects w/ large impact parameter (e.g. displaced taus).

- dE/dx searches
- Delayed / out-of-time / trackless jets
- Non-pointing / delayed photons

CMS detector for a sense of scale

Joey Reichert (Rutgers)

LLP Signatures with MET

May 13, 2024

Classic MET signatures vs. LLP + MET signatures

Classic MET signatures vs. LLP + MET signatures

Reinterpreting traditional "prompt" searches is always possible, but by reconstructing the LLP signatures, we can suppress backgrounds and *significantly* improve sensitivity

Joey Reichert (Rutgers)

LLP Signatures with MET

Hadronic displaced vertices + MET

General idea: reconstruct LLP decay points using tracks

- Eliminate SM backgrounds via mass or boost-related requirements
- Require many tracks per vertex (\geq 5) to suppress random crossing bkgs
- Avoid material interaction backgrounds by sither restricting vehicles to be within beampipe, or using material map vetos \sqrt{s} =13 TeV, L=32.8 fb⁻¹, All Reconstructed Vertices

May 13, 2024

CMS: Inelastic dark matter via displaced muons + MET

Two dark matter states coupled via dark photon.

Heavier DM has long lifetime due to small mass splitting \implies pair of soft displaced leptons.

 $c\tau \propto \frac{(m_{A'})^4}{(\Lambda m_{DMA})^5}$; target 1 mm - 1 meter range.

CMS: Inelastic dark matter via displaced muons + MET

CMS: Inelastic dark matter via displaced muons + MET

Categorize by number of displaced muons that match in ΔR to a standard muon.

- Fewer matches \implies larger displacement
- Use kinematics, isolation, and muon d_{xy} to both suppress and estimate background (mostly QCD)

	Events per SR category					
	0-match 1-match 2-match					
Pred.	1.2 ± 0.6	0.5 ± 0.2	0.5 ± 0.2			
Obs.	2	0	0			

First such search at a hadron collider!

 $\in^2 \alpha_{\rm D} (m_1/m_{\rm A'})^4$

 \geq

10 30 40 8 20 m_1 [GeV]

LLP Signatures with MET

ATLAS Displaced Vertices at high MET

- MET > 250 GeV
- SR with $\geq 1 \text{ DV}$
- \geq 5-trk vertices w/ material map vetoes, m_{DV} > 10 GeV

<u>Phys. Rev. D 97 (2018) 052012</u>

Joey Reichert (Rutgers)

Joey Reichert (Rutgers)

101 fb⁻¹ (13 TeV) CMS 137 fb⁻¹ (13 TeV) **10**² $\Delta m(\widetilde{\chi}_{1}^{\pm},\widetilde{\chi}_{1}^{0})$ (GeV) $pp \rightarrow \widetilde{\chi}\widetilde{\chi}, \widetilde{\chi}_{1}^{\pm} \rightarrow \pi^{\pm}\widetilde{\chi}_{1}^{0}$ section [pb] NLO+NLL exclusion --- Observed±1 σ_{theory} higgsino, Δm^0 =2 Δm^{\pm}_{--} 0.45 Expected $\pm 1 \sigma_{\text{experiment}}$ — rad. corrections 10 0.4 C 20 0.35 UO Δm^{\pm} upper limit 0.3 10 0.25 CL 0.2 $\widetilde{\chi}_{1}^{\pm}\widetilde{\chi}_{1}^{\mp}, \widetilde{\chi}_{1}^{\pm}\widetilde{\chi}_{1,2}^{0}$ production (higgsino-like $\widetilde{\chi}_{0}$) %**56** 10⁻³ $\tan \beta = 5, \, \mu > 0$ 0.15 400 600 800 1000 200 800 600 $m_{\tilde{\chi}^{\pm}}$ (GeV) m__{χ̃⁺} [GeV] 140 fb⁻¹ (13 TeV) **_CMS** 137 fb⁻¹ (13 TeV) $\Delta m(\widetilde{\chi}_{1}^{\pm},\widetilde{\chi}_{1}^{0})$ (GeV) $pp \rightarrow \widetilde{\chi}\widetilde{\chi}, \widetilde{\chi}_{1}^{\pm} \rightarrow \pi^{\pm}\widetilde{\chi}_{1}^{0}$ section [pb] NLO+NLL exclusion --- Observed±1 σ_{theory} wino-like $\widetilde{\chi}_1^0$ 0.45 - Expected $\pm 1 \sigma_{\text{experiment}}$ — rad. corrections] 10 0.4 ဟ cro 0.35 ЧO Δm^{\pm} 0.3 upper limit 0.25 10⁻² CL 0.2 $\widetilde{\chi}_{1}^{\pm}\widetilde{\chi}_{1}^{\mp}, \widetilde{\chi}_{1}^{\pm}\widetilde{\chi}_{1}^{0}$ production (wino-like $\widetilde{\chi}_{0}$) %**56** 10⁻³ $\tan\beta = 5, \, \mu > 0$ 0.15 7-4-+ 200 400 600 800 1000 1000 m_{χ⁺} [GeV] $m_{\tilde{\chi}_{\star}^{\pm}}$ (GeV) May 13, 2024

LLP Signatures with MET

ATLAS: Soft mildly-displaced tracks + huge MET

Heavy *charged* LLPs will travel through and ionize the detector.

much larger ionization than SM ones.

- Bethe-Bloch tells us that these slowly moving charged particles will have

Heavy *charged* LLPs will travel through and ionize the detector.

much larger ionization than SM ones.

- Bethe-Bloch tells us that these slowly moving charged particles will have

Look for high pT tracks with large dE/dx

- ATLAS: calo MET triggers (decays beyond calo, or decays to stable LSP)
- CMS: muon triggers (track looks similar!)
- R-hadrons, charginos, and sleptons in split / AMSB / GMSB SUSY models, and $Z' \rightarrow T'(2e)T'(2e)$

understanding of detector effects such as radiation damage.

Use momentum and dE/dx to reconstruct mass:

Joey Reichert (Rutgers)

Measure dE/dx in the silicon tracker—need dedicated calibrations and careful

Measure dE/dx in the silicon tracker—need dedicated calibrations and careful understanding of detector effects such as radiation damage.

Use momentum and dE/dx to reconstruct mass:

Measure dE/dx in the silicon tracker—need dedicated calibrations and careful understanding of detector effects such as radiation damage.

Use momentum and dE/dx to reconstruct mass:

ATLAS dE/dx selections

Category	Item	Description			
Event topology	Trigger	Unprescaled lowest-threshold $E_{\rm T}^{\rm miss}$ trigger			
	$E_{\mathrm{T}}^{\mathrm{miss}}$	$E_{\rm T}^{\rm miss} > 170 { m GeV}$			
	Primary vertex	The hard-scatter vertex must have at least two tracks			
Events are required	d to have at least one track fulfi	illing <i>all</i> criteria listed below; tracks sorted in p_{T} descending order			
Track kinematics	Momentum	$p_{\rm T} > 120 {\rm GeV}$			
	Pseudorapidity	$ \eta < 1.8$			
	$W^{\pm} \rightarrow \ell^{\pm} \nu$ veto	$m_{\rm T}({\rm track}, \vec{p}_{\rm T}^{\rm miss}) > 130 {\rm GeV}$			
Track quality	Impact parameters	Track matched to the hard-scatter vertex; $ d_0 < 2 \text{ mm}$ and $ \Delta z_0 \sin \theta < 3 \text{ mm}$			
	Rel. momentum resolution	$\sigma_p < \max\left(10\%, -1\% + 90\% \times \frac{ p }{\text{TeV}}\right) \text{ and } \sigma_p < 200\%$			
	Cluster requirement (1)	At least two clusters used for the $\langle dE/dx \rangle_{trunc}$ calculation			
	Cluster requirement (2)	Must have a cluster in the IBL (if this is expected), or			
		a cluster in the next-to-innermost pixel layer			
		(if this is expected while a cluster is not expected in IBL)			
	Cluster requirement (3)	No shared pixel clusters and no split pixel clusters			
	Cluster requirement (4)	Number of SCT clusters > 5			
Vetoes	Isolation	$\left(\sum_{\text{trk}} p_{\text{T}}\right) < 5 \text{ GeV} \text{ (cone size } \Delta R = 0.3)$			
	Electron veto	EM fraction < 0.95			
	Hadron and τ -lepton veto	$E_{\rm jet}/p_{\rm track} < 1$			
	Muon requirement	SR-Mu: MS track matched to ID track; SR-Trk: otherwise			
Pixel dE/dx	Inclusive	Low: $dE/dx \in [1.8, 2.4] \text{ MeV g}^{-1} \text{ cm}^2$			
	Inclusive	High: $dE/dx > 2.4 \text{ MeV g}^{-1} \text{cm}^2$			
		IBLO_Low: $dE/dx \in [1.8, 2.4]$ MeV g ⁻¹ cm ² and OF _{IBL} = 0			
	Binned	IBLO_High: $dE/dx > 2.4 \text{ MeV g}^{-1} \text{ cm}^2$ and $OF_{IBL} = 0$			
		IBL1: $dE/dx > 1.8 \text{ MeV g}^{-1} \text{ cm}^2 \text{ and } \text{OF}_{\text{IBL}} = 1$			

SR name	Discovery	Limit setting	Track category	IBL overflow	dE/dr [MeV
	Discovery	Linit setting	The cutegory		
SR-Inclusive_Low			inclusive	ves or no	[1.8, 2
SR-Inclusive_High	\checkmark		merusive	yes of no	> 2.
SR-Trk-IBL0_Low		\checkmark		no	[1.8, 2
SR-Trk-IBL0_High		\checkmark	track	no	> 2.
SR-Trk-IBL1		\checkmark		yes	> 1.
SR-Mu-IBL0_Low		\checkmark		no	[1.8, 2
SR-Mu-IBL0_High		\checkmark	muon tracks	no	> 2.
SR-Mu-IBL1		\checkmark		yes	> 1.

Region	$p_{\rm T}$ [GeV]	$ \eta $	$E_{\rm T}^{\rm miss}$ [GeV]	dE/dx [MeV g ⁻¹ cm ²]
SR			> 170	> 1.8
CR-kin	> 120	< 1.8	> 170	< 1.8
CR-dEdx			< 170	> 0
VR-LowPt			> 170	> 1.8
CR-LowPt-kin	[50, 110]	< 1.8	> 170	< 1.8
CR-LowPt-dEdx			< 170	> 0
VR-HiEta			> 170	> 1.6
CR-HiEta-kin	> 50	[1.8, 2.5]	> 170	< 1.6
CR-HiEta-dEdx			< 170	> 0

Selection criteria All events Trigger $p_{\rm T} > 55 \,{\rm GeV}$ $|\eta| < 1$ # of valid pixel hits in L2-L4 \geq 2 Fraction of valid hits > 0.8# of dE/dx measurements ≥ 10 High purity track Track χ^2 /dof < 5 $d_z < 0.1 \, {\rm cm}$ $d_{\rm xy} < 0.02 \, {\rm cm}$ $I_{\rm PF}^{\rm rel} < 0.02$ $I_{\rm trk} < 15 \,{\rm GeV}$ PF E/p < 0.3 $\sigma_{p_{\rm T}} / p_{\rm T}^2 < 0.0008$ $F_{\rm i}^{\rm Pixels} > 0.3$

Data	ĝ (1.8 TeV)	Pair-prod. $\tilde{\tau}$ (557 GeV)
1	1	1
0.15	0.11	0.86
0.11	0.11	0.86
0.059	0.074	0.64
0.056	0.071	0.62
0.052	0.069	0.62
0.052	0.069	0.62
0.052	0.069	0.62
0.052	0.069	0.62
0.052	0.069	0.62
0.048	0.069	0.62
0.014	0.065	0.61
0.014	0.065	0.61
0.014	0.064	0.61
0.014	0.064	0.61
0.011	0.064	0.60

ATLAS dE/dx limits

Joey Reichert (Rutgers)

LLP Signatures with MET

May 13, 2024

ATLAS dE/dx with low β limits

Joey Reichert (Rutgers)

May 13, 2024

Assumes stable LLP for all of these

CMS *Preliminary* 101 fb⁻¹ (13 TeV) Cross Section [pb] 95% CL Upper Limits 10^{-1} **Observed Limit** Expected Limit $\pm 1\sigma$, $\pm 2\sigma$ σ^{NNLO+NNLL}(pp→**ĝĝ)**±1σ -----10⁻² Split SUSY 10^{-3} 10^{-4} 2.2 2.4 2.6 1.8 2 1.4 1.6 2. $m_{\widetilde{a}}$ [TeV] **CMS** *Preliminary* 101 fb⁻¹ (13 TeV) Cross Section [pb] 10⁻¹ 95% CL Upper Limits **Observed Limit** Expected Limit $\pm 1\sigma$, $\pm 2\sigma$ σ^{NNLO+NNLL}(pp→tt)±1σ Split SUSY 10^{-3} 10^{-4} 2.2 2.4 2.6 1.2 1.4 1.6 1.8 2 m_∓ [TeV]

Joey Reichert (Rutgers)

CMS dE/dx limits

May 13, 2024

Joey Reichert (Rutgers)

CMS delayed jets

Joey Reichert (Rutgers)

$H \rightarrow LLPs$ search

	Low- Δm selection					High- Δm selection		
	$(\Delta m = 10 \text{ GeV})$					$(\Delta m > 10 \text{ GeV})$		
Parameter	CR	$VR(E_T^{miss})$	VR(t)	SR	CR	VR $(E_{\rm T}^{\rm miss})$	VR(t)	SR
E_{cell} [GeV]		> 7				> 10		
$E_{\rm T}^{\rm miss}$ [GeV]	< 30	30–50	> 80	> 80	< 30	30–50	> 50	> 50
$t_{\gamma} [\text{ns}]$	> 0	> 0	< 0	> 0	> 0	> 0	< 0	> 0
$ \Delta z_{\gamma} $ bins [mm]		[0, 50, 100, 200, 300, 2000]						
$ t_{\gamma} $ bins [ns]								
1γ channel		[0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 12.0]						
$\geq 2\gamma$ channel		[0, 0.2, 0.4, 0.6, 0.8, 1.0, 12.0]						

Channel	Test region requirements	Expected	Observed	$\sigma_{ m vis}^{95}$ [fb]
1γ	$1.5 < t_{\gamma} < 12 \text{ ns}, \Delta z_{\gamma} > 300 \text{ mm}$	3.8 ± 1.6	4	0.042
$\geq 2\gamma$	$1.0 < t_{\gamma} < 12 \text{ ns}, \Delta z_{\gamma} > 300 \text{ mm}$	0.28 ± 0.04	0	0.022
$\geq 1\gamma$		4.1 ± 1.7	4	0.041

Vertexed photons search

Parameter		Preselection	requirements				
Photon multiplicity	> 1						
Photon η	$ \eta < 1.37$ o	$ \eta < 1.37 \text{ or } 1.52 < \eta < 2.37 (\ge 1 \text{ with } \eta < 1.$					
$E_{\text{cell}}(\gamma)$ [GeV]		$E_{\text{cell}}(\gamma_1), \ E_{\text{cell}}(\gamma_2) > 5$					
$p_T(\gamma)$ [GeV]		$p_T(\gamma_1) > 40,$	$p_T(\gamma_2) > 30$				
$\Delta \eta_{\gamma\gamma}$		> ().1				
$m_{\gamma\gamma}$ [GeV]		>	60				
V _R [mm]		[0, 1	500]				
$ V_z $ [mm]	< 3740						
t_{γ} [ns]	$t_{\gamma_1}, t_{\gamma_2} \in [-12, 12]$						
	Analysis region requirements						
Parameter	CR	VR($E_{\rm T}^{\rm miss}$)	$\mathbf{VR}(t)$	SR			
$E_{\rm T}^{\rm miss}$ [GeV]	< 20	20–30	> 1	30			
$m_{\gamma\gamma}$ [GeV]	>]	135	[60,	135]			
Sign of t_{γ}	$t_{\gamma_1} \times t_{\gamma_1}$	$t_{\gamma_2} > 0$	$t_{\gamma_1}, t_{\gamma_2} < 0$	$t_{\gamma_1}, t_{\gamma_2}$			
$p_T^{\gamma\gamma}$ [GeV]	- · · · · · · · · · · · · · · · · · · ·						
$\Delta \phi(\gamma_1,\gamma_2)$	- < 2						
	Vertexing	and timing bir	IS				
ρ bin edges [mm]		[0, 80, 160, 30	00, 520, 2000]				
<i>t</i> _{avg} bin edges [ns]		[0, 0.2, 0.4,	0.6, 0.9, 12]				

Selection	Data	Total Background	p_0	$Z(\sigma)$	Nex
SR, $t_{avg} > 0.9$ ns	4	10.2 ± 3.0	0.97	-1.96	

LLP Signatures with MET

May 13, 2024

