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Dark Matter Searches





How do you search for something when 

1) You don’t really know what that something is 
2) You know vaguely what that something is, but the 

parameter space is huge



Anomaly detection for New Physics searches
Did we only harvest low hanging fruit?

● Our exclusions plots look more or less 
all the same

○ Best exclusion around the TeV scale
○ Low sensitivity at low masses
○ Degradation of performance at higher 

energy

● What are the reasons?

● Is there a way “we can improve on exotic 
signatures” ?
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A lot of searches ( = PhD students)…



Anomaly detection for New Physics searches

Can we reduce 
this 

Background shapes

● Backgrounds:
○ All our main backgrounds (QCD, ttbar, DY, 

W+jets) look the same, a falling distribution 
in any reasonable kinematic variable 

● This is the main reason for the low 
mass performance degradation

εbkg in SR



Anomaly detection for New Physics searches
Background falling shape amplified 
● Trigger selection affects the analyses

○ The maximum rate is limited
○ The background is there (see previous slide)
○ The trigger has limited resolution
○ Simple trigger selections (pT cuts, HT cuts, etc…) 

rather than “signature tailored”

=> The signal efficiency is limited at low energy

Can we reduce 
this 

and maximise 
this 

Background shapes

● Backgrounds:
○ All our main backgrounds (QCD, ttbar, DY, 

W+jets) look the same, a falling distribution 
in any reasonable kinematic variable 

● This is the main reason for the low 
mass performance degradation

εsignal in SR 
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Anomaly detection for New Physics searches
Background falling shape amplified 
● Trigger selection affects the analyses

○ The maximum rate is limited
○ The background is there (see previous slide)
○ The trigger has limited resolution
○ Simple trigger selections (pT cuts, HT cuts, etc…) 

rather than “signature tailored”

=> The signal efficiency is limited at low energy

Can we reduce 
this 

and maximise 
this 

to probe hundreds of signal 
hypotheses all at once?

Background shapes

● Backgrounds:
○ All our main backgrounds (QCD, ttbar, DY, 

W+jets) look the same, a falling distribution 
in any reasonable kinematic variable 

● This is the main reason for the low 
mass performance degradation

*(Maybe also some we didn’t think of yet?)



Standard Model 
(simulated events)

Signal hypothesis  
(simulated events)

Interesting regionNot interesting region

Some variable of interest

Anomaly detection for New Physics searches



LEARN THIS FROM 
DATA

LOOK FOR ANYTING 
THAT DOESNT LOOK 

LIKE THIS

Some variable of interest

Anomaly detection for New Physics searches



Types of anomaly detection

Out l ier  de tec t ion Detec t ing  overdens i t ies
Find ( resonant )  overdens i t ies  in  d is t r ibut ionsFind  (non-resonant )  out-o f-d is t r ibut ion  datapo in ts   

Two Types of Anomaly Detection
Outlier Detection 

[Nonresonant]

[1805.02664, 1806.02350, 1902.02634, 1912.12155, 2001.05001, 2001.04990, 2012.11638, 2106.10164, 
2109.00546, 2202.00686, 2203.09470, 2208.05484, 2210.14924, 2212.11285, ….]

[1807.10261, 1808.08979, 1808.08992, 1811.10276, 1903.02032, 1912.10625, 2004.09360, 2006.05432, 
2007.01850, 2007.15830, 2010.07940, 2102.08390, 2104.09051, 2105.07988, 2105.10427, 2105.09274, 
2106.10164, 2108,03986, 2109.10919, 2110.06948, 2112.04958, 2203.01343,2206.14225, 2304.03836, … ]

• Searching for unique 
or unexpected events 

• In HEP, this is the tails 
of distributions

Finding 
Overdensities 

[Resonant]

• Analagous to the 
traditional bump hunt

[1207.7214]
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Types of anomaly detection

Out l ier  de tec t ion Detec t ing  overdens i t ies

pbg(x|mjj) pbg(x|mjj) 

psig+bg(x|

Autoencoders (AEs)
AEs work by learning compression to a latent space which 
preserves the original information.

Variational AEs (VAEs) add a 
stochastic component by having 
the decoder sample from latent 
space. There are multiple different 
choices for anomaly score.

The reconstruction fidelity gives an anomaly score. 

[Hajer et al: 1807.10261, Roy, Vijay: 1903.02032, Cheng et al: 2007.01850, Beekveld et al: 2010.07940, Batson 
et al: 2102.08380, Finke et al: 2104.09051, Govorkova et al: 2108.03986, Collins: 2109.10919, Fraser et al: 
2110.06948, Ngairangbam et al: 2112.04958, Dillon et al: 2206.14225, Roche et al: 2304.03836,…]

[Cerri et al: 1811.10276]

[Hajer et al: 1807.10261]  
[Heimel et al: 1808.08979] 
[Farina et al: 1808.08992] 

Non-resonant, tail of distributions 
• Often (variational) auto-encoders 
• Useful for triggering! 

Caveats 
• What’s a good metric for optimisation? 
• How to use selected events in analysis?

Resonant, similar to a bump hunt 
• Density estimation methods 
• Useful for offline analysis 

Caveats 
• Relies on a definition of “sideband” and a sizeable signal



Outlier detection
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Outlier detection

ℜk

x x̂

n × m n × m
E.g 3-prong gluino fat jet

Harder

Cascade decays to light neutralinos (as is expected from natural SUSY) with 

RPV can result in highly boosted resonances (fat jets).
Current limits from multijet searches are weakened in this regime, for various 

reasons:

• the merging jets lead the event to fail the Njet threshold
• there is a hard cut on fat jet mass
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Figure 1: Diagrams for the benchmark processes considered for this analysis. The black lines represent Standard

Model particles, the red lines represent SUSY partners, the grey shaded circles represent e�ective vertices that

include o�-shell propagators (e.g. heavy squarks coupling to a �̃0
1 neutralino and a quark), and the blue solid

circles represent e�ective RPV vertices allowed by the baryon-number-violating � 00 couplings with o�-shell

propagators (e.g. heavy squarks coupling to two quarks). Quark and antiquark are not distinguished in the

diagrams.

2 ATLAS detector

The ATLAS detector [25] covers almost the whole solid angle around the collision point with layers

of tracking detectors, calorimeters and muon chambers. The inner detector, immersed in a magnetic

field provided by a solenoid, has full coverage in � and covers the pseudorapidity range |⌘ | < 2.5.1 It

consists of a silicon pixel detector, a silicon microstrip detector and a transition radiation straw-tube

tracker. The innermost pixel layer, the insertable B-layer, was added between Run-1 and Run-2 of

the LHC, at a radius of 33 mm around a new, thinner, beam pipe [26]. In the pseudorapidity region

|⌘ | < 3.2, high granularity lead/liquid-argon (LAr) electromagnetic (EM) sampling calorimeters are

used. A steel/scintillator tile calorimeter provides hadronic calorimetry coverage over |⌘ | < 1.7. The

end-cap and forward regions, spanning 1.5 < |⌘ | < 4.9, are instrumented with LAr calorimetry for

both the EM and hadronic measurements. The muon spectrometer surrounds these calorimeters, and

comprises a system of precision tracking chambers and fast-response detectors for triggering, with

three large toroidal magnets, each consisting of eight coils, providing the magnetic field for the muon

detectors. A two-level trigger system is used to select events [27]. The first-level trigger is implemented

in hardware and uses a subset of the detector information. This is followed by the software-based

high-level trigger, reducing the event rate to about 1 kHz.

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the centre of the detector

and the z-axis along the beam direction. The x-axis points toward the centre of the LHC ring, and the y-axis points

upward. Cylindrical coordinates (r, �) are used in the transverse plane, � being the azimuthal angle around the beam pipe.

The pseudorapidity ⌘ is defined in terms of the polar angle ✓ by ⌘ ⌘ � ln[tan(✓/2)].

3

 is Mean Squared Error , “high error events” proxy for “degree of abnormality”ℒ(x, x̂) (x, x̂)
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256 A Lorentz invariance based Deep Neural Network for W-tagging

When performing the following multiplication

x
C
µ,i = xµ,iCi,j , (10.3)

the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
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In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.
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In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.

….

x̂

n × m

๏ Idea applied to tagging jets, 
in order to define a QCD-jet 
veto 

๏ Applied in a BSM search 
(e.g., dijet resonance) could 
highlight new physics signal 

๏ Based on image and physics-
inspired representations of 
jets  

 

Example: Jet autoencoders

12

Farina et al., arXiv:1808.08992
Heimel et al., arXiv:1808.08979

Figure 2: Distribution of reconstruction error computed with a CNN autoencoder on test samples of
QCD background (gray) and two signals: tops (blue) and 400GeV gluinos (orange).

We see that the autoencoder works as advertised: it learns to reconstruct the QCD

background that it has been trained on (to be precise, we train on 100k QCD jets and

then we evaluate the autoencoder on a separate sample of QCD jets), and it fails to

reconstruct the signals that it has never seen before. This is further illustrated in Fig. 3,

which shows the average QCD, top and gluino jet image before and after autoencoder

reconstruction. We see by eye that the QCD images are reconstructed well on average,

while the others contain more errors.

By sliding the reconstruction loss threshold L > LS around, we can turn the his-

tograms in Fig. 2 into ROC curves. The ROC curves for the di↵erent autoencoder

architectures are shown in Fig. 4 for the top and gluino signals. For comparison we have

also included the ROC curve obtained by cutting on jet mass as an anomaly threshold.

While the three architectures have comparable performances it is clear there are some

important di↵erences. For tops, the CNN outperforms the others, while for gluinos the

situation is largely reversed. Surprisingly, for gluinos, the CNN is even outperformed

by the humble PCA autoencoder at all but the lowest signal e�ciencies! We will ex-

plore this in more detail in section 4.2, but a clue as to what’s going on is shown in

the comparison of the PCA ROC curve with the jet mass ROC curve. For gluinos,

they track each other extremely closely, suggesting that the PCA reconstruction error is

highly correlated with jet mass. We will confirm this in section 4.2. Evidently, the PCA

autoencoder (and to a lesser extent the dense autoencoder) has learned to reconstruct

7

Figure 1: The schematic diagram of an autoencoder. The input is mapped into a low(er) dimensional
representation, in this case 6-dim, and then decoded.

threshold.

For concreteness, we will focus in this work on distinguishing “fat” QCD jets from

other types of heavier, boosted resonances decaying to jets. Building on previous work

on top tagging [12], we will concentrate on machine learning algorithms that take jet

images as inputs. For signal, we will consider all-hadronic top jets, as well as 400 GeV

gluinos decaying to 3 jets via RPV. Obviously, this is not meant to be an exhaustive

study of all possible backgrounds and signals and methods but is just meant to be a

proof of concept. The idea of autoencoders for anomaly detection is fully general and not

limited to these signals. We will comment on other forms of inputs in section 5. Moreover

there are many other anomaly detection techniques that are not based on autoencoder

and/or on reconstruction (loss) which are worth exploring in future work. At the same

time autoencoders have been recently used in other high energy physics applications:

in parton shower simulation [28], for feature selection of a supervised classification [30],

and for automated detection of detector aberrations in CMS [31].

We will explore various architectures for the autoencoder, from simple dense neural

networks to convolutional neural networks (CNNs), as well as a shallow linear represen-

tation in the form of Principal Component Analysis (PCA). We will see that while they

are all e↵ective at improving S/B by factors of ⇠ 10 or more, they have important dif-

ferences. The reconstruction errors of the dense and PCA autoencoders correlate more

highly with jet mass, leading to greater S/B improvement for the 400 GeV gluinos com-

pared to the CNN autoencoder. While this may seem better at first glance, we discuss

how one might want to use an autoencoder that is decorrelated with jet mass, in order

to obtain data-driven side-band estimates of the QCD background and perform a bump

hunt in jet mass. Indeed, we show how cutting on the reconstruction error of the CNN

autoencoder results in stable jet mass distributions, and we show how this can be used

to improve S/B by a factor of ⇠ 6 in a jet mass bump hunt for the 400 GeV gluino
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tagger [13]. It starts from a set of measured 4-vectors sorted by transverse momentum

(kµ,i) =

0
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k2,1 k2,2 · · · k2,N
k3,1 k3,2 · · · k3,N

1

CCA . (3)

Following the left panel of Fig. 1 we use N = 40 constituents, after checking that an increase
to N = 120 does not make a measurable di↵erence. For jets with fewer constituents we
naturally fill the entries remaining in the soft regime with zeros.

To remove all information from the jet-level kinematics we boost all 4-momenta into the
rest frame of the fat jet. This also improves the performance of our network. Inspired
by recombination jet algorithms we can add linear combinations of these 4-vectors with a
trainable matrix Cij , defining a combination layer

kµ,i
CoLa�! ekµ,j = kµ,i Cij with C =

0

BB@
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1
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We allow for M = 10 trainable linear combinations. These combined 4-vectors carry informa-
tion on the hadronically decaying massive particles. In the original LoLa approach we map
the momenta k̃j onto observable Lorentz scalars and related observables [13]. Because this
mapping is not easily invertible we do not use it for the autoencoder. Instead, we extend the
4-vectors by another component containing the invariant mass,

k̃j =

0

BB@

k̃0,j
k̃1,j
k̃2,j
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1
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BBBBBB@
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This defines a set of 51 extended 4-vectors, which form the input to our neural network.
Again, we use Keras [35] combined with Tensorflow [36]. Its architecture is shown in
Fig. 3. The layer immediately after the LoLa contains 51 ⇥ (4 + 1) = 255 units. Between
the second layer after LoLa and the last layer, the autoencoder network is symmetric. The
final output consist of 40 4-vector-like objects, which can be compared with the corresponding

Figure 3: Architecture of the 4-vector-based autoencoder network. The 255 input units
correspond to 55 LoLa-vectors with 4+1 entries each. The output only consists of 160 units,
because the extended 4-vectors only carry four independent observables.
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the momenta k̃j onto observable Lorentz scalars and related observables [13]. Because this
mapping is not easily invertible we do not use it for the autoencoder. Instead, we extend the
4-vectors by another component containing the invariant mass,

k̃j =

0

BB@

k̃0,j
k̃1,j
k̃2,j
k̃3,j

1

CCA
LoLa�!

0

BBBBBB@

k̃0,j
k̃1,j
k̃2,j
k̃3,jq
k̃2j

1

CCCCCCA
. (5)

This defines a set of 51 extended 4-vectors, which form the input to our neural network.
Again, we use Keras [35] combined with Tensorflow [36]. Its architecture is shown in
Fig. 3. The layer immediately after the LoLa contains 51 ⇥ (4 + 1) = 255 units. Between
the second layer after LoLa and the last layer, the autoencoder network is symmetric. The
final output consist of 40 4-vector-like objects, which can be compared with the corresponding

Figure 3: Architecture of the 4-vector-based autoencoder network. The 255 input units
correspond to 55 LoLa-vectors with 4+1 entries each. The output only consists of 160 units,
because the extended 4-vectors only carry four independent observables.

6

Large error for 
abnormal data

MSE(x, x̂)
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Outlier detection in analysis
2

Figure 1: Dijet mass distribution of a simulated set of QCD background events injected with
24 fb of the X→YY signal before any cut on the anomaly score (left) and after cutting on the
anomaly score of the TNT algorithm (middle). The distribution after cutting on the TNT
anomaly score in a background only sample is shown on the right. In both cases the back-
ground distribution after the anomaly remains smooth and is well modeled with a parametric
function. Cutting on the TNT score removes a significant amount of background events, result-
ing in a substantially enhanced signal peak in the middle plot.

the background distribution into something non-smooth is also crucial, as the final statistical
analysis involves assuming that the background can be described by a smoothly falling func-
tion. This is shown in the plot on the right. A full explanation of the method used to produce
this signal-sensitive data distribution, as well as four other similar methods, will be described
in the following.

The anomaly detection methods we use are based on three different training paradigms for ML
based anomaly detection: un-supervised, weakly-supervised and semi-supervised learning.

The un-supervised learning attempts to construct a model to identify anomalous jets without
using any labeled examples. The method employed here consists of a Variational Autoencoder
(VAE) trained on a data sample dominated by QCD jets and a quantile regression network
(QR) used to decorrelate the anomaly score with the dijet mass. This method is referred to as
VAE-QR. Autoencoders are a type of neural network which are trained to compress inputs into
a smaller representation and decompress to recover the original inputs. The VAE employed
here takes as input the 100 highest-pT constituents of a jet, with the ordering obtained from
a C/A reclustering of the components. Each particle is represented as a set of three features,
which are the x, y, and z component of its momentum p. The VAE is trained using jets from
the signal-depleted control region. It therefore learns how to perform this compression and
decompression on QCD background jets, but should not be able to perform this task as well
on anomalous jets not present in the training sample. Therefore the difference between the
original and reconstructed data can be used as an effective anomaly score, with higher values
corresponding to more signal-like events. To decorrelate this anomaly score from the variable
of interest (in this case the dijet invariant mass), a quantile regression [13] method is used. The
quantile regression is trained to find the cut on the anomaly score as a function of mjj which
corresponds to a fixed data efficiency in the signal region. A cut on the decorrelated anomaly
score is then applied to both jets in the signal region. A cut corresponding to the 10% most
anomalous data is used.

Three methods based on weak supervision are employed: CWoLa Hunting [14], TNT [15] and
CATHODE [16]. Weakly supervised training [17] is entirely data-driven, and allows one to
train a signal versus background classifier by using labels for groups of data events rather than

E.g CASE 

Before cut on anomaly score After cut on anomaly score

https://cds.cern.ch/record/2892677?ln=en


Variational Autoencoder: Decorrelation from dijet mass

trivial cuts on min(L1,L2)
result in background sculpting

train NN to regress quantiles 
corresponding to fixed efficiencies 

20

leaves background unsculpted

Variational Autoencoder: Decorrelation from dijet mass

trivial cuts on min(L1,L2)
result in background sculpting

train NN to regress quantiles 
corresponding to fixed efficiencies 

20

leaves background unsculpted

Outlier detection in analysis
E.g CASE 

Careful! Cut on score can sculpt spectrum Can fix using quantile regression

https://cds.cern.ch/record/2892677?ln=en


Outlier detection in analysis



Example for semi-visible jets
F. Eble: Normalized autoencoders R. Seidita: Lund Graph autoencoders
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Finding overdensities

More Unsupervised Bump Hunts

•SALAD: Reweight simulation to 
match sidebands, then 
interpolate into the signal 
region and use a second 
classifier to get the likelihood 
ratio 

•CURTAINS: Train an invertible 
neural network conditioned on 
mass to map between 
sidebands 

•FETA: Map simulation to data 
in sidebands, then compare to 
SR data

[Andreassen et al: 2001.05001]

[Raine et al: 2203.09470]

[Golling et al: 2212.11285]

CURTAINS 
[Raine et al: 2203.09470] 

FETA 
[Golling et al: 2212.11285] 



Finding overdensities - CWoLa bvumphunt
S enriched sample in data B enriched sample in data
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S

B

LABEL = SIGNAL
LABEL = BKGE.g CASE 

https://cds.cern.ch/record/2892677?ln=en


Data spectra - no excess

● Reminder: for VAE, only 1 anomaly cut, totally independent of probed mass

● Six different A regions for weakly supervised models (B regions in Backup)

● No significant excess 44
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Weakly  superv ised  -  CWoLa

SIGNAL BACKGROUND

rinv = 1 Z(νν)

0<rinv<1 q/g jet
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Weakly  superv ised  -  CWoLa

rinv = 1

q/g jet

Z(νν)

vs. 
?

0<rinv<1
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Weakly  superv ised  -  CWoLa

SVJ

rinv = 1

q/g jet

vs. 
?

Z( )ℓℓ

"Boosting mono-jet searches with model-agnostic machine learning" Kraemer et al. 

https://inspirehep.net/literature/2072400
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Weakly  superv ised  -  CWoLa

MIXED SAMPLE 1 MIXED SAMPLE 2

LABEL = SIGNAL LABEL = BKG

Any jet classifier

JETS FROM 
MET+JET TOPOLOGY 
→ SIGNAL REGION

JETS FROM 
+JET TOPOLOGY 

→ SIGNAL NOT EXPECTED HERE
ℓℓ



Density estimation
Various methods

ML-based interpolation from sidebands to signal region: 

ANODE: interpolates densities from sidebands to the signal-region & 
constructs likelihood ratio 

CATHODE: samples from the background model in signal region after 
interpolating and estimates likelihood ratio with classifier 

LaCATHODE: Use a in flow to perform CATHODE in latent space 
 
CURTAINS: Train invertible NN conditioned on mass to map between 
sidebands 

ML-based MC reweighting: 

SALAD: Reweight simulation to match sideband, interpolate into the 
signal region and use a second classifier to get the likelihood 

FETA: Map simulation to data in sidebands, then compare to SR data 
 

More Unsupervised Bump Hunts

•SALAD: Reweight simulation to 
match sidebands, then 
interpolate into the signal 
region and use a second 
classifier to get the likelihood 
ratio 

•CURTAINS: Train an invertible 
neural network conditioned on 
mass to map between 
sidebands 

•FETA: Map simulation to data 
in sidebands, then compare to 
SR data

[Andreassen et al: 2001.05001]

[Raine et al: 2203.09470]

[Golling et al: 2212.11285]

CURTAINS 
[Raine et al: 2203.09470] 

FETA 
[Golling et al: 2212.11285] 

https://arxiv.org/abs/2001.04990
https://arxiv.org/abs/2109.00546
https://arxiv.org/abs/2210.14924
https://arxiv.org/abs/2203.09470
https://arxiv.org/abs/2001.05001
FETA


Why these methods are good for DM searches

We could cast a 
huge net to catch 
a broad range of 
signals in a single 
search!
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Blabla 
• Dodge 
• Dodge 

Blabla 
• Dodge 
• Dodge 

 
 
 
 
 
 
 

40 MHz 

Level-1 hardware trigger 
• 0.3% of events left 

High Level Trigger CPU farm 
• 0.0025% of events left

110 kHz 1 kHz 

Offline reconstruction and storage

Do physics with 0.0025%  of collision events, the rest is discarded! 

Detector 
• 100% of events left 



Probing smaller and smaller 
couplings, lower and lower 
masses 
 
Need more statistics! 13 TeV

“Probability” of  
producing “anything”

Mono-jet search limits 95% CL 
0.3 - 736 fb



Anomaly Detection triggers

Energy (GeV)Trigger threshold

NP?

- - LOST DATA 
- - SELECTED DATA 
- - POSSIBLE NP SIGNAL

Level-1  re jec ts  >99%  o f  events !  
Is  there  a  smarter  way  to  se lec t?



Anomaly Detection triggers

Energy (GeV)Trigger threshold

NP?

- - LOST DATA 
- - SELECTED DATA 
- - POSSIBLE NP SIGNAL

Reconstruction error
AD threshold

NP?

- - LOST DATA 
- - SELECTED DATA 
- - POSSIBLE NP SIGNAL

Everything here 
is normal

Everything here 
is abnormal



Anomaly Detection in the CMS Level 1 µGT for Run3! 

Input from Run 3 µGT quantities​: 
•(pT, η, ɸ) hardware integer inputs from: 1 MET, 4 e/γ, 4 µ, and 10 jet objects

pT η φ

x

AXOL1TL  

https://indico.nikhef.nl/event/4875/contributions/20303/attachments/8213/11697/eucaifcon_axol1tl_slides.pdf


pT η φ

Regularize latent space  
to avoid overfittingx x̂

Sampled latent representation 

pT η φ



pT η φ

x

Only deploy encoder, compute degree of abnormality from patent space only 
• Do not need to keep input around for MSE  
• Half network size and latency!



CICADA 

CNN in Level-1 Calorimeter Trigger!


Represent calorimeter tower as image and use CNN auto encoder

https://cds.cern.ch/record/2879816/files/DP2023_086.pdf


E.g Higgs → A(15 GeV) A(15 GeV) → 4b



E.g Higgs → A(15 GeV) A(15 GeV) → 4b

Background falling shape amplified 
● Trigger selection affects the analyses

○ The maximum rate is limited
○ The background is there (see previous slide)
○ The trigger has limited resolution
○ Simple trigger selections (pT cuts, HT cuts, etc…) 

rather than “signature tailored”

=> The signal efficiency is limited at low energy

Background shapes

● Backgrounds:
○ All our main backgrounds (QCD, ttbar, DY, 

W+jets) look the same, a falling distribution 
in any reasonable kinematic variable 

● This is the main reason for the low 
mass performance degradation

We can do both of these efficiently, model-agnostic and datadriven!



Alternative approach: End-to-end DNN search 
• How do we get around defining a signal hypothesis? 
• What is alternate hypothesis to test reference? 

Idea: Assume alternate model n(x|w) can be  
parametrised in terms of reference model n(x|R) 
 

•  Let DNN parametrise alternative model 
n(x | ⃗w ) = n(x |R)ef(x; ⃗w ) Set of real functions

f(x; ⃗w ) = NN

End-to-end-approach: NPLM

https://arxiv.org/pdf/1806.02350.pdf


Alternative approach: End-to-end DNN search 
• How do we get around defining a signal hypothesis? 
• What is alternate hypothesis to test reference? 

Idea: Assume alternate model n(x|w) can be  
parametrised in terms of reference model n(x|R) 
 

•  Let DNN parametrise alternative model 

• Formulate loss as log likelihood.  
→ Trained DNN is the maximum likelihood fit  
to data and reference log-ratio 
→ best approximate of true data distribution 

n(x | ⃗w ) = n(x |R)ef(x; ⃗w ) Set of real functions

f(x; ⃗w ) = NN

data and reference distributions log-ratio. It is the best approximant, within the neural network
parametrization, of the true underlying data distribution n(x|T)

f(x, bw) ' log


n(x|T)

n(x|R)

�
. (12)

Notice that training unavoidably requires some sort of regularization because our loss function
(11) is unbounded from below, namely it approaches negative infinity if f diverges at some value
of x belonging to the D (i.e., y = 1) class. Notice that the problematic situation occurs only when
the divergence in f is sharply localized, such that f(x) stays finite for all x 2 R. Otherwise the
positive exponent that we have in the loss function for the R (i.e., y = 0) class overcompensates
the negative divergence. We avoid these dangerous configurations by enforcing an upper bound (set
by the so-called “weight clipping” parameter W ) on the absolute value of each weight. This forbids
the neural network to diverge and to produce sharp features on a scale �x . 1/W . Given that
infinitely sharp features cannot show up in the true distribution because of experimental resolution
smearing, for any concrete problem it will be possible to choose W large enough not to limit the
approximation capabilities of the neural network. We use W = 100 in the following.

To obtain a p-value that tests the agreement between data and the reference model we proceed
as discussed at the beginning of section 2. First we train the network using the actual data sample
and a large reference sample distributed according to the R model, as pictorially shown in figure 1.
This gives us the observed value of the test statistic tobs. Then we repeat the training on many
toy experiments generated according to the reference distribution, i.e. we use the same reference
sample, network architecture and training parameters as before, but we substitute the data sample
with toy reference samples. For each of these samples we compute t and thus obtain P (t|R). The
p-value is then computed in the usual way (see eq. (5)).

Before moving forward it is worth to clarify some assumptions that our method relies on. First,
we assumed knowledge of the expected number of events, N(R), which appears in the definition of
the loss function in eq. (11). This can be problematic because the total event rate is often not well
predicted by high energy physics simulations. The simplest way out is to take N(R) equal to the
number of data that has been observed in the actual experiment. This is conservative as it assumes
perfect agreement of the observed number of events with the reference model prediction. In what
follows we keep working under the assumption that N(R) is known a priori, but this assumption
can be easily eliminated as previously explained. Furthermore in real-life applications (and in most
of the examples we discuss) the signal component is small and the total number of events is not a
significant discriminant.

Much more problematic is assuming the Monte Carlo to provide a perfect description of the
reference distribution shape. This is not realistic because Monte Carlo generators are subject to
systematic uncertainties, which for large enough statistics unavoidably result in a significant tension
with the data. These uncertainties are routinely modeled as nuisance parameters and treated with
the profile likelihood ratio formalism [69, 70]. The basic idea is that we should first of all identify
the value of the nuisance parameters that best describe the data, taking of course also into account
auxiliary measurements and not only the data set of interest. Next we use these values in the
reference distribution prediction of eq. (3). A proper tune of the reference model Monte Carlo to
the data is a prerequisite for any new physics search, hence this problem is in some sense orthogonal
to the one that we are addressing. However the interplay and the possible synergies between the
two aspects should be carefully studied. Especially the possibility of incorporating in the network
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DNN loss function! 
Can be used to build  
hypothesis test + p-value  
Data → toys under R,  
repeat
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More Unsupervised Bump Hunts

•SALAD: Reweight simulation to 
match sidebands, then 
interpolate into the signal 
region and use a second 
classifier to get the likelihood 
ratio 

•CURTAINS: Train an invertible 
neural network conditioned on 
mass to map between 
sidebands 

•FETA: Map simulation to data 
in sidebands, then compare to 
SR data

[Andreassen et al: 2001.05001]

[Raine et al: 2203.09470]

[Golling et al: 2212.11285]

CURTAINS 
[Raine et al: 2203.09470] 

FETA 
[Golling et al: 2212.11285] 
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