

Dark Matter Searches

restad

Roadmap of Dark Matter Models for Run 3 CERN Tue 14 May

		14:00	Theory and Motivation of dark Higg	09:00	Cosmolog	gical perspectives and constraints on t-channel m	odels [20'	+10']	14:00	Dark Photon Searches on LHCb (20'+10') Speaker: Adrian Casais Vidal (Massachusetts Inst	titute of Tec	hadow (MIT))		14:20	LLP-DM overview: linking searches to models, and LLP experiment reach for		
		I	apeaker. Gorgio Arcau		Speaker: C	niara Arina (CP3 UCLouvain)				opeaner. Permit outer men pressentaters manue or recimology (with)					Speaker: David Curtin (University of Toronto)		
		14:30	Searches for Dark Higgs Bosons at Speakers: Mr Changqiao Li (Max Planck S	09:30	A theory o Speaker: Lu	overview on t-channel models and their LHC pheno uca Panizzi (Uppsala University)	omenolog	y [30'+10']	14:30	Dark Photon Searches on CMS (20'+10') Speaker: Elisa Fontanesi (Boston University (US))					Aavidcurtin_DM-LLP		
		14:50	Searches for Dark Higgs Bosons at	10.10	t shownal	dark matter models and beauty flavours [25]+10]			15.00	Dark Photon Searches on ATLAS (20'+10'	0			14:55	Multiple track signatures		
			Speakers: Alicia Calderon Tazon (Univers	10:10	Speaker: M	dark matter models and neavy navours [25+10]				Speaker: Hassnae El Jarrari (CERN)	·				Speaker: Jackson Carl Burzynski (Simon Fraser University (CA))		
10:15	Reinte			I		(16:45	Mass-independent searches		Burzynski_LLPMulti		
	In this i	15:10	Review of Benchmark Models Used	10:45		Coffee	reak		15:30	Recasting Dark Photon Searches (20'+10'	0		Speaker: Christina Wenlu Wang (California Institute	'			
	scenar		We present a review of the models use							Speaker: Yotam Soreq (Massachusetts Institute of	Technology)	17:05	Departing wighligt	15:20	Signatures with MET		
	betwee		were defined as bins in the $E_{\rm T}^{\rm miss}$ signif	11:15	09:00	Experimental introdution to extended higgs mo	dels: an A	ATLAS perspe	ective (20'-	+10') Q 30m Speakers: Prof. Andre Lessa (00MH, Univ Enders			Speakers: Prof. Andre Lessa (CONH-Univ Federal		Speaker: Joseph Reichert (Rutgers State Univ. of New Jersey (US))		
	searcn		each of these regions. No significant ex			Speaker: Janna Katharina Behr (Deutsches Elektronen-Sy	chrotron (DE	E))			1	opeakers. From Pillare Costa (contri-onit reactar		2024-05-13 DM Wor			
	Hence,		do not reproduce the observed dark-ma	11:35								17:30 Update on the CODEX-b Experiment		15:45	Pair produced LLPs (to jets leptons photons)		
	a) dark		constraints. We also consider the impa		09:30	Experimental introdution to extended higgs mo	dels: a CN	VIS perspectiv	ve (20'+10	0) (§ 30)	m		The High Luminosity LHC will be a tremendous	15.45	Speaker Audrey Katherine Kyam (University of Massachusetts (US))		
	c) Higg		dark-matter summary effort by ALLAS searches. Plans are also made to provi			Speaker: Danyer Perez Adan (RWTH Aachen University (DI))						feebly connected to the known SM sector. Such				
	Speake		reinterpretations of the search, but it is	12:05	10:00	Theory introduction to extended higgs models:	a collider	r perspective ((20'+10')	() 30			cavern, around 25m from the LHCb interaction		PairProducedLLP_K		
10:20	Evolora	Speaker: Even Simonsen Haaland (Unive Theory introduction to extended higgs models: a collider perspective (20'+10') Speaker: Even Simonsen Haaland (Unive Speakers: Jose Miguel No Redondo (Conseil Europeen Recherche Nucl. (CERN)-Unknown), Jose Miguel					se Miguel No Redondo demonstrator (CODEX-β) is foreseen for insta focus on the status and plans for CODEX-β.			demonstrator (CODEX- β) is foreseen for installa focus on the status and plans for CODEX- β .	ation and op	on and operation during LHC Run 3. This talk will present the latest developments and will					
10.50	After the	a first round o	f CV Leventimental results the focus has a	hifted to over	10:20	Theory introduction to extended biggs models:	a dark matter phenomenology perspective (20'+10') (\$ 30					Speaker: Louis Henry (EPFL - Ecole Polytechnique Federale Lausanne (CH)) of Kaluza-Klein States at LHC and Implication for Dark Matter [12+3] O 15m		ne (CH))			
	Arter the	e inscriound o	a systexperimental results, the focus has si	ninted to exp	10.50	Speakers: Giorgio Busoni (The University of Melbourne), G				11:30	Production of K			itter [12+3] (9 15m			
1	16:00	Searches f	for Extra Higgs Bosons and the 95 GeV	Excess [25	5		5					t has been propo	sed that, in the large radius compactification (LR	C) scenario.	the Kaluza-Klein states might be considered as dark matter		
		Speaker: Th	nomas Biekötter		11:00		coffe	e break		() 30		states at LHC if n	nasses lie in the accessible LHC energy sc	9:00 A	smoking gun signature of the 3HDM [20+10]		
	16:20	Light Higg	BOSONS ATLASICMS [15+5]									protected by a co	nservation law not to decay to SM particle	Sp	eaker: Dr Atri Dey (Dublin Institute for Advanced Studies)		
	16:30	Speaker P:	allahi Das (Princeton University (US))		11:30	Extended Higgs Sector in Singlet-Triplet Fermi	nic Mode	el for Dark Ma	atter and M	Neutrino Mass (12'+3') ③ 15		perturbation theo	ry, i.e. cross-section bounds are obtained r	9:30 Fe	ermionic Portal to Vector Dark Matter [20+10]		
	I	opearenti	and buy (mean enreasy (eg))			Speaker: Dr Manimala Mitra (Institute of Physics (IOP))						such as Lorentz i	nvariance, causality and uniqueness of vac	W	e suggest a new class of models - Fermionic Portal Vector Dark Matter (FPVDM) which		
	16:50	Search for	r inelastic dark matter in association wi	th a dark H	11:45	Sensitivity of 2HDMa searches to Inert Doublet	Model (1)	2'+3')		015		properties of rele	vant cross sections as a function of energy	da	rk gauge sector. While FPVDM does not require kinetic mixing and Higgs portal. It is bar		
		Belle II has	a unique reach for a broad class of models	that postula	a	Speaker: Dr Javita Lahiri (II. Theoretical Institute for Physic	. University o	of Hamburg)		013		Speaker: Jnanad	eva Maharana (National Institute of Science Educ	wh	ich couples the dark sector with the SM sector through the Yukawa interaction. The FPV		
		One scenar	io is a model which involves inelastic dark r	matter, cons	si:							🔁 cern-dm24.pd	f	ex	plain not only DM but also could provide solutions of various BSM hints, including (g-2).		
_		the presenc	e of a dark Higgs boson. This model has a	signature of	f		+3')			© 15	11.45	Course for Anti	Quede Munerata via de la internación uni	me	asurement by CDF, etc.		
16:3		asker Brof B	Higgs to invisible	(Laboration)		© 20m	he Dark M	Matter searche	es at the LH	HC. So far, all the 2HDMa benchmarks used by t	11.45	LHC monitors [12+3]	Tv	/o examples will be discussed. One of them is the FPVDM realisation with only a VL top		
	- sp	eaker. PTOL P	yungwon Ko (KIAS (Korea insutute for Advanced S	audy))			degenera of the c	ate Higgses (<i>m</i> charged Higgse	$n_A = m_H$ es. that the	$T = m_{H^{\pm}}$). The latter implies, together with the $A/H/H^{\pm}$ bosons are all constrained to be he		Anti-quark nugge	ts, AQNs, (ZHITNITSKY, 2003), have been s	FP	Prising implications for DM direct and indirect detection experiments, relic density and PDM framework with a doublet of new vector-like partners of muon can simultaneously e		
17:0	0 Be	Beyond the Dark matter effective field theory and a simplified model approach at colliders (315m)						the universe, and have been proposed as an explanation of				an	omaly which has been in close focus of the HEP community over two decades. It predic				
	In t	this talk, I will	review the importance of "Gauge invariance	e" in the sea	arch for Dark	matter at the High Energy Collider including LHC.	Ma mode a Higgs b	lel with a Type-I bosons to be ev	·l Yukawa s wen lighter	sector, which, for moderate values of $\tan \beta$, lifts than the SM Higgs boson. We discuss four		Their size is in the velocity of DM co	e µm range and their density equal to the n	We	Il as the mass of the muon partner to be below 1 TeV, and provides novel multi-lepton si		
	The	e maior topic	s I will include will be				ses and	the signatures	s that arise	in this model, some of which have not yet been		streams or cluste	rs are impinging, e.g., on the Earth, as was	Th	e talk is based on 2203.04681, 2204.03510 arXiv papers as well as the new one which in		
	1)	The limit of e	ffective field theory / simplified model appre	oach at the l	High Energy	collider	the dom	ninant channels	s in these b	penchmarks and the expected sensitivity in Run :		Interestingly, in th	e LHC beam, unforeseen beam losses are	Sp	eaker: Prof. Alexander Belyaev (University of Southampton & Rutherford Appleton Laboratory)		
	2)	Dark matter s	showering at the High Energy		and the local st	ible element and an element of the second				0.00		be constituted of	dust particles with a size in the µm range	0:00 In	elastic Dark Matter at the LHC Lifetime Frontier [20+10]		
	Sp	eaker: Prof. N	Ayeonghun Park (Seoultech) 14:00	Sneaker Di	iallo Bove (Br	rockhaven National Laboratory)				© 20m		Prezeau suggest	ed that streaming DM constituents inciden	Sp	eaker: Max Fieg (University of California Irvine (US))		
17:2	.5 Is	Is the light neutralino thermal dark matt										ideas open up no	vel directions in the search for DM.				
_	We	We explore the parameter space of the phen 14:30 CMS Higgs to invisible plans and summary							© 20m This talk su			This talk suggest	This talk suggests a new analysis of the UFO results at the LHC, assure a reanalysis of the existing data from the ~4000 beam monitors since		at they are eventually, at least partly, due to AQNs. Specifically,		
	the	thermal dark matter (Mfx01 ≤ Mh/2) that is a Speaker: Andrea Malara (Universite Libre de Bruxelles (BE))						should be			should behave differently. The feasibility of this idea has been discussed			a three CERN accelerator experts and other collaborators.			
	wit ele	th light Higgsi ctroweakino	inos having masses between searches implemented in recommended			co channel requite						Speaker: Konstar	tin Zioutas (University of Patras (GR))				
	hin	nts towards ei	ther a gap in the present LHC	Sneaker M	latten Bauce	Section 1 Interests a INEN Roma L(IT))				0 20m							
	dec	d our analysis dicated effort	s using the machine learning ts to probe this region should			· (12:00	The Triggerless	Search for Exotic DM at Run-3 with the Mo	EDAL-MA	P Experiment [12+3] © 15m		
	det	detection searches for dark matter by the LU 15:30 New experimental directions for s-channel						© 20m				The MoEDAL-MAPP experiment at Run-3 incorporates the MoEDAL and MAPP-1 (MoEDAL Apparatus for Penetrating Particles) detectors deployed at IP8 and in the UA83 tunnel on the LHC Ring, respectively. The passive, triggerless, MoEDAL detector has been taking data at Run-1 and Run-2 and is a world leader in the direct search for Highly Ionizing Particles (HIPs) at a Collider. HIP avatars of new physics			P-1 (MoEDAL Apparatus for Penetrating Particles) detectors asive, triggerless, MoEDAL detector has been taking data at		
	att	at the LHC using XGBOOST. Finally, we also discuss the effect of non-standard cosmology on the parameter space.									R				Particles (HIPs) at a Collider. HIP avatars of new physics		
	Sp	Speaker: Rhitaja Sengupta (BCTP and Physikalisches Institut der Universität Bonn, Germany)					16:30 Mono-X Signatures of a Fermionic Dark Matter at the LHC (15'+ Speakers: Kai Ma (Shaanxi University of Technology), Prof. Shao-Feng Ge (TDI					include several exotic dark matter candidates including magnetic m lepton-like multi-charged constituents of composite dark matter, ef		c monopoles, Q-balls, nuclearites, microscopic black-hole remnants and , etc.			
		Darkonia at Colliders						apeavera. Ivar ma (anaanxi university or reciniciogy), Prot. Snao-Peng Ge (TDL				The MAPP-1 detector is currently being installed on the LHC ring an		and is primarily designed to search for Weakly Ionizing Particle (WIPs)			
_17:5	o Da	O 15m						16:50 Dark Photon Theory Landscape (25'+10')				messengers of new physics. However, it also has sensitivity to v			ary long-lived charged and neutral particles (LLPs) exemplars of physics		
	pro	park matter bound states may exist within the dark sector, characterized by a substantial dark force. Depending on the spins and parity properties of the force carriers, Standard Model particles may primarily couple with either the lowest or excited bound states. We discuss					Speaker: Stefania Gori (UC Santa Cruz)				stored subject to optional "software a trigger" cuts. In this sense		MAPP-1 is tr	riggerless. The MAPP-1 detector will also be used in the			
	the	e associated o	collider signatures at the LHC for various sir	mplified mo	dels.		17:25	Dark Photo	n Evoloret	tion Reyond the LHC (25'+10')		search for exotic	DM messengers of new physics such as: millich	arged partic	les, light neutralinos and sterile neutrinos.		
	Sp	eaker: Yang B	Bai				17.23	Park Photo	a explored	and bejond the line (20 (10)	I 1	Speaker: James	Pinfold (University of Alberta (CA))				

50	Dar	koni	ia.	at	Col	llie
× .	 Da1	NVII	l ci	ar	00	

Speaker: Bertrand Echenard (California Institute of Technology (US))

DM-workshop-CER...

extends the Standard Model (ed on the Vector-Like (VL) fe 'DM framework provides a ve on the VL partner and scalar mu, flavour anomalies, W-bos

partner, which provides intere collider searches. Another rea xplain DM relic density toget ts the mass of vector DM to b gnatures at the LHC.

coming this March-April.

How do you search for something when

	The major topics I will include will be 1) The limit of effective field theory / simplified model ap 2) Dark matter showering at the High Energy	proach at the High Energy collider	ses and the dor	d the signatures that arise in this model, some of which have not yet been minant channels in these benchmarks and the expected sensitivity in Run	1
	Speaker: Prof. Myeonghun Park (Secultech) 14:00	ATLAS Higgs to invisible plans and summary		© 20m	
17:25	Is the light neutralino thermal dark matt	Speaker. Diallo Boye (Brooknaven National Laboratory)			
	We explore the parameter space of the phen thermal dark matter (M x01 ≤ Mh/2) that is c with light Higgsinos baying masses between	CMS Higgs to invisible plans and summary Speaker: Andrea Malara (Universite Libre de Bruxelles (BE))		© 20m	
	electroweakino searches implemented in rec hints towards either a gap in the present LHC and our analysis using the machine learning	ATLAS & CMS legacy s-channel results Speaker: Matteo Bauce (Sapienza Universita e INFN, Roma I (IT))		③ 20m	12:
	dedicated efforts to probe this region should detection searches for dark matter by the LU impact of light staus on the parameter space at the LHC using XGBOOST. Finally, we also discuss the	New experimental directions for s-channel	_	© 20m	
	Speaker: Rhitaja Sengupta (BCTP and Physikalisches Institut de	r Universität Bonn, Germany)	16:30	Mono-X Signatures of a Fermionic Dark Matter at the LHC (154 Speakers: Kai Ma (Shaanxi University of Technology), Prof. Shao-Feng Ge (TD	ŀ
17:50	Darkonia at Colliders	© 15m	16:50	Dark Photon Theory Landscape (25'+10')	
	Dark matter bound states may exist within the dark sect properties of the force carriers, Standard Model particles the associated collider signatures at the LHC for various	or, characterized by a substantial dark force. Depending on the spins and parity may primarily couple with either the lowest or excited bound states. We discuss simplified models.		Speaker: Stefania Gori (UC Santa Cruz)	
			17:25	Dark Photon Exploration Beyond the LHC (25'+10')	

Speaker: Yang Bai

10:15

Spea

16:30

16:30

17:00

Searches on LHCb (20'+10')			
n Casais Vidal (Massachusetts Institute of Technology (MIT))		14:20	LLP-DM overview: linking searches to models, and LLP experiment reach for
			Speaker: David Curtin (University of Toronto)
Searches on CMS (20'+10')			Advidcurtin_DM-LLP
Fontanesi (Boston University (US))			
		14:55	Multiple track signatures
Searches on ATLAS (20'+10')		1-1.00	Speaker Jackson Carl Burnmaki (Sman Francis University (24))
nae El Jarrari (CERN)			Speaker. Sackson Can buizynski (amon Praser University (CA))
16:45	Mass-independent searches		Burzynski_LLPMulti
rk Photon Searches (20'+10')	Speaker: Christina Wenlu Wang (California Institute		
n Soreq (Massachusetts Institute of Technology)		15:20	Signatures with MET
17:05	Recasting wishlist		Speaker: Joseph Reichert (Rutgers State Univ. of New Jersey (US))
③ 30m	Speakers: Prof. Andre Lessa (CCNH - Univ. Federal		2024-05-13 DM Wor
17:30	Update on the CODEX-b Experiment		
© 30m	The High Luminosity LHC will be a tramendous	15:45	Pair-produced LLPs (to jets, leptons, photons)

You don't really know what that something is You know vaguely what that something is, but the parameter space is huge

Speaker: Bertrand Echenard (California Institute of Technology (US))

Interestingly, in the LHC beam, unforeseen beam losses are be constituted of dust particles with a size in the µm rang

streams or clusters are impinging, e.g., on the Earth, as wa

Prezeau suggested that streaming DM constituents incide ideas open up novel directions in the search for DM.

Speaker: Prof. Alexander Belyaev (University of Southampton & Rutherford Appleton Laboratory)

10:00 Inelastic Dark Matter at the LHC Lifetime Frontier [20+10] Speaker: Max Fieg (University of California Irvine (US)

This talk suggests a new analysis of the UFO results at the LHC, assuming that they are eventually, at least partly, due to AQNs. Specifically, a reanalysis of the existing data from the ~4000 beam monitors since the beginning of the LHC is proposed, arguing that dust and AQNs should behave differently. The feasibility of this idea has been discussed with three CERN accelerator experts and other collaborators.

Speaker: Konstantin Zioutas (University of Patras (GR))

The Triggerless Search for Exotic DM at Run-3 with the MoEDAL-MAPP Experiment [12+3]

③15m

he talk is based on 2203.04681, 2204.03510 arXiv papers as well as the new one which is coming this March-April.

The MoEDAL-MAPP experiment at Run-3 incorporates the MoEDAL and MAPP-1 (MoEDAL Apparatus for Penetrating Particles) detectors deployed at IP8 and in the UA83 tunnel on the LHC Ring, respectively. The passive, triggerless, MoEDAL detector has been taking data at Run-1 and Run-2 and is a world leader in the direct search for Highly Ionizing Particles (HIPs) at a Collider. HIP avatars of new physics include several exotic dark matter candidates including magnetic monopoles, Q-balls, nuclearites, microscopic black-hole remnants and lepton-like multi-charged constituents of composite dark matter, etc.

The MAPP-1 detector is currently being installed on the LHC ring and is primarily designed to search for Weakly Ionizing Particle (WIPs) messengers of new physics. However, it also has sensitivity to very long-lived charged and neutral particles (LLPs) exemplars of physics beyond the Standard Model, decaying to charged and photonic states. The MAPP-1 data acquisition rate is low enough that all data can be stored subject to optional "software a trigger" cuts. In this sense MAPP-1 is triggerless. The MAPP-1 detector will also be used in the search for exotic DM messengers of new physics such as: millicharged particles, light neutralinos and sterile neutrinos.

Speaker: James Pinfold (University of Alberta (CA))

DM-workshop-CER...

DM model space

A lot of searches (= PhD students)...

Figure 5: Sketch of the constraints on a simplified model of WIMP DM where a particle with axial vector couplings of 1 u and 0.25 to DM and SM respectively is exchanged. The constraints from mono-X (exclusion region in red) and dijet DM searches (exclusion region in blue) are shown in the plane of dark matter

Standard Model (simulated events)

LEARN THIS FROM DATA

LOOK FOR ANYTING THAT DOESNT LOOK **LIKE THIS**

Types of anomaly detection

Outlier detection

Find (non-resonant) out-of-distribution datapoints

Detecting overdensities

Find (resonant) overdensities in distributions

Types of anomaly detection

Outlier detection

Non-resonant, tail of distributions

- Often (variational) auto-encoders
- Useful for triggering!

Caveats

- What's a good metric for optimisation?
- How to use selected events in analysis?

Detecting overdensities

Resonant, similar to a bump hunt

- Density estimation methods
- Useful for offline analysis

Caveats

Relies on a definition of "sideband" and a sizeable signal

Outlier detection

Compressed representation of x. Latent space \Re^k , k < m×n prevents memorisation of input, must learn

Outlier detection

 $\mathscr{L}(\mathbf{x}, \hat{\mathbf{x}})$ is Mean Squared Error $(\mathbf{x}, \hat{\mathbf{x}})$, "high error events" proxy for "degree of abnormality"

Outlier detection

SciPost Physics

Ι

Ve allow for M = 10 trainable linear combinations. These combined 4-vectors of on on the hadronically decaying massive particles. In the original LOLA app the momenta \tilde{k}_j onto observable Lorentz scalars and related observables [13] mapping is not easily invertible we do not use it for the autoencoder. Instead, vectors by another component containing the invariant mass,

Outlier detection in analysis E.g <u>CASE</u>

Outlier detection in ana E.g <u>CASE</u>

Outlier detection in analysis

Example for semi-visible jets

F. Eble: Normalized autoencoders

R. Seidita: Lund Graph autoencoders

Finding overdensities

Finding overdensities - CWoLa byumphunt

S enriched sample in data

B enriched sample in data

 $Z(\ell \ell)$

q/g jet

JETS FROM MET+JET TOPOLOGY \rightarrow SIGNAL REGION

MIXED SAMPLE 1

JETS FROM $\ell\ell$ +JET TOPOLOGY \rightarrow SIGNAL NOT EXPECTED HERE

MIXED SAMPLE 2

Density estimation Various methods

<u>ML-based interpolation from sidebands to signal region:</u>

ANODE: interpolates densities from sidebands to the signal-region & constructs likelihood ratio

CATHODE: samples from the background model in signal region after interpolating and estimates likelihood ratio with classifier

LaCATHODE: Use a in flow to perform CATHODE in latent space

CURTAINS: Train invertible NN conditioned on mass to map between sidebands

ML-based MC reweighting:

SALAD: Reweight simulation to match sideband, interpolate into the signal region and use a second classifier to get the likelihood

FETA: Map simulation to data in sidebands, then compare to SR data

Why these methods are good for DM searches

We could cast a huge net to catch a broad range of signals in a single search!

Do physics with 0.0025% of collision events, the rest is discarded!

Level-1 hardware trigger0.3% of events left

40 MHz

100% of events left

High Level Trigger CPU farm0.0025% of events left

Probing smaller and smaller couplings, lower and lower masses

Need <u>more</u> statistics!

Anomaly Detection triggers

Trigger threshold

Energy (GeV)

Level-1 rejects >99% of events! Is there a smarter way to select?

Anomaly Detection triggers

Trigger threshold

Energy (GeV)

- - LOST DATA SELECTED DATA - - POSSIBLE NP SIGNAL

Everything here is normal

Everything here is abnormal

AD threshold

AXOLITL

Anomaly Detection in the CMS Level 1 µGT for Run3!

Input from Run 3 µGT quantities:

•(p_T , n, ϕ) hardware integer inputs from: 1 MET, 4 e/ γ , 4 μ , and 10 jet objects

AXOLITL

loss = $|| \mathbf{x} - \mathbf{x}^{\prime} ||^{2} + KL[N(\mu_{x}, \sigma_{x}), N(0, I)]$

AXOLITL

Only deploy encoder, compute degree of abnormality from patent space only

- Do not need to keep input around for MSE
- Half network size and latency!

CNN in Level-1 Calorimeter Trigger! Represent calorimeter tower as image and use CNN auto encoder

E.g Higgs \rightarrow A(15 GeV) A(15 GeV) \rightarrow 4b

AXOL1TL Rate	1 kHz	5 kHz	10 kHz
Signal Efficiency Gain	46%	100%	133%

E.g Higgs \rightarrow A(15 GeV) A(15 GeV) \rightarrow 4b

We can do both of these efficiently, model-agnostic and datadriven!

End-to-end-approach: NPLM

Alternative approach: End-to-end DNN search

- How do we get around defining a signal hypothesis?
- What is alternate hypothesis to test reference?

Idea: Assume alternate model n(x|w) can be parametrised in terms of reference model n(x|R)

$$n(x \mid \overrightarrow{w}) = n(x \mid R)e^{f(x; \overrightarrow{w})}$$
 - Set of real functions

• Let DNN parametrise alternative model

$$f(x; \vec{w}) = NN$$

unctions

End-to-end-approach: NPLM

Alternative approach: End-to-end DNN search

- How do we get around defining a signal hypothesis?
- What is alternate hypothesis to test reference?

Idea: Assume alternate model n(x|w) can be parametrised in terms of reference model n(x|R)

$$n(x \mid \overrightarrow{w}) = n(x \mid R)e^{f(x; \overrightarrow{w})}$$
 - Set of real full

• Let DNN parametrise alternative model

$$f(x; \overrightarrow{w}) = NN$$

Formulate loss as log likelihood.
 → Trained DNN <u>is</u> the maximum likelihood fit to data and reference log-ratio
 → best approximate of true data distribution

$$f(x, \widehat{\mathbf{w}}) \simeq \log \left[\frac{n(x|\mathbf{T})}{n(x|\mathbf{R})} \right] \longleftarrow \text{True underlying of } \mathbf{MC}$$
 distribution

unctions

data distribution

INPUTS - any high level features

 $f(x, \widehat{\mathbf{w}}) \simeq \log \left[\frac{n(x|\mathbf{T})}{n(x|\mathbf{R})} \right]$ — True underlying data distribution — MC distribution

OUTPUTS

-tobs and $f(x; \hat{w})$

hypothesis test + p-value Data \rightarrow toys under R, repeat

MIXED SAMPLE 1

MIXED SAMPLE 2

