Louis Henry

CERN, 13/05/2024

CODEX-b

COmpact Detector for EXotics at LHCb

CODEX- b

Motivation and experiment design

- LHCb interaction point produces a flurry of particles but instruments 4% of the solid angle.
- Cheap to add an off-axis (transverse) tracker behind a huge shield and a long distance away from LHCb , in preexisting cavern: CODEX-b.

Physic motivation and reach

- More in 1911.00481 (HNLs, ALPs, ...).

- LHC is the place to look for dark photons (left), scalar portal (right) interesting too.
- Complementarity with LHCb.
- Interesting reach for HNLs, ALPS.

Base layout of the detector

- Far from the primary vertex \rightarrow large area/volume even with small angular acceptance.
- Need cheap, efficient and fast detection.
- Why fast? Interplay with LHCb is easier. For instance, could b-tag an event.
- Answer: Resistive Plate Chambers (RPC's) - fast, precise, cheap for large area. 6 RPC layers at 4 cm intervals on each box face with 1 cm granularity.
- Additional 5 layers inside (improve vertex resolution and tracking efficiency);
- 50-100 ps timing from RPC's foreseen for mass reconstruction
- Mature technology, support from ATLAS.
- No magnetic field, no calorimetry, no Cherenkov
- Possible to reconstruct mass from geometry, showcased in Phys. Rev. D 97, 015023 (2018).
- Coincidence with rest of the event at LHCb being studied

How to achieve 0 background ?

- First answer: let's put a huge shield!
- 32λ of concrete $(7 \lambda)+\mathrm{Pb}, \mathrm{W}(25 \lambda)$.
- Stops the 10^{14} neutrons \& $\mathrm{K}_{\mathrm{L}} / 300 \mathrm{fb}^{-1}$.
- But also gives more chances to muons to interact deep into the shield and shower: stopped-parent secondaries.
- Need to use an active shield

- Deep enough that the rejection rate is much smaller than the event rate
- Not too close to CODEX- b, or else the muon will have been stopped already.
- Nominal shield in so-called ' $20+5 \lambda$ ', in total 12λ from CODEX- b.

Less than 1 event expected over entire run of CODEX-b

Demonstrator and progress

CODEX- β

Testing the concept: CODEX- β

- CODEX- b is an HL-LHC detector, but we must do a lot in the meantime.
- Validate background estimates;
- Integrate with LHCb data acquisition;
- Demonstrate suitability of RPC technology;
- Build expertise in detector production.
- Physics reach limited to 2/4-body.

- e.g. multibaryonic decays from hidden valley.
- 6 detector faces +1 inner station: $2 \times 2 \times 2 \mathrm{~m}^{3}$
- Use the RPCs developed as part of the ATLAS BIS78 project
- No active veto, so expect $\sim 10^{7} \mathrm{~K}_{\mathrm{L}}$ decays in demonstrator.

- Install during 2024, take data during 2025, decommission in 2026

Progress on the demonstrator

- Mechanical support structure is well developed.
- Triplet frame redesigned for mechanical needs.
- 4 of 14 frames built and at CERN.

- Remaining frames expected at CERN before end of June.
- RPC production on schedule:
- All 42 panels prepared
- Readouts attached to 22 of 42 singlets, 22 singlets closed
- 1 of 14 triplets fully characterized
- Gas system design and procurement underway
- Data acquisition is top priority, with self-triggering contingency.
- First frame filled, cabled, and powered!
- Huge thanks to ATLAS, CMS \& ANUBIS.

Installation and to-do

- Gas system to be installed by CERN gas group in June/July
- Slow controls being developed with LHCb experts
- DAQ being worked on from both ends (readout from triplet, input to LHCb triggerless system)
- Urgent need for additional FPGA expertise to make DCT readout LHCb-compatible
- In the next 6 months (incomplete list):
- Finish singlet and frame production, ship and assemble;
- Test RPC triplets;
- Install gas system and build "final mile";

- Will publish Technical Design Report for CODEX- β this year.

CODEX- b : global status

CODEX- β is approved as a 2024-2025 LHCb R\&D project

- Perfect time to join:
- Any contribution will have a large impact!
- Many different areas: hardware, softare, collaboration.
- Next CODEX- b week will be at CERN from June 10 - 14
- No formal commitments required to attend.

