

Roadmap of Dark Matter models for Run 3 CERN May 13-17, 2024

Dark photon searches with the ATLAS Detector at the LHC

Hassnae El Jarrari (CERN)

On behalf of the ATLAS collaboration

May 15th, 2024

Hidden Dark Sector

Visible Sector

Attractive BSM scenarios predict existence of a Dark Sector (DS) allowing a wide variety of unexplored signatures at the LHC.

• DS is a hypothetical collection of fields and particles predicted as a possible SM extensions with no direct interactions. • Couples extremely weakly to the SM through mediating particles such as **Dark photons** ("portal" interactions)

- Either kinetically mixes with the SM photon or couples to the Higgs sector via mediators and could be produced through portals:

$$L \supset -\frac{\epsilon}{2}B^{\mu\nu}A'_{\mu\nu} - H^{+}H(AS + \lambda S^{2}) - Vector portal IOkun; Galison & Manohar; Holdom;Foot et al] IPatt & Wilczek]$$

- $\epsilon \sim 10^{-7} 10^{-3}$ (2 loop corrections)

Dark Photon

• Predicted in models with an additional dark U(1) gauge symmetry in the hidden sector (arxiv:2005.01515).

• Kinetic mixing: $\epsilon \sim 10^{-3} - 10^{-1}$ (1 loop correction), • Lifetime: $\tau(\gamma_D) \propto \frac{1}{m(\gamma_D)\epsilon^2}$ (Small ϵ value => long γ_D)

Massless Dark-Photon: less explored scenario (No tree-level couplings with SM) => effective (higher-dimensional operators induced at 1-loop).

Dark Photon

Massive vs massless

Massive Dark-Photon: most searched for (tree-level coupling with SM fermions via kinetic mixing).

Dark Photon ATLAS signatures

- ATLAS is searching for dark photons in various experimental signatures
- A wide range of dark photon masses is considered: from 0 to 200 GeV

Summary of ATLAS dark photon results between 2020 - 2024

2020 Results using 33 fb⁻¹collected in 2016:

- Long-lived particles in displaced di-muon vertices
- Displaced Hadronic Jets

Long-lived particles in displaced di-muon vertices

- ggF Higgs production: 44.1 pb.
- $m_H = 125 \text{ GeV}, m_{H_D} = 300 \text{ GeV}$
- Main background: low-mass Drell–Yan, Z+jets and cosmic-muons.
- $m_{Z_D} = 20-60 \text{ GeV} => Br(Z_D \to \mu^+ \mu^-) = 0.1475 0.1066.$

$$B(H \to Z_{\rm D} Z_{\rm D}) \propto \zeta \frac{m_H^2}{|m_{H_{\rm D}}^2 - m_H^2|}$$

 $\sigma(pp \to H) \times B(H \to Z_D Z_D) \times B(Z_D \to \mu^+ \mu^-)$

$m_{Z_{\rm D}}$ [GeV]	$c\tau_{Z_{\rm D}}$ [cm]	$B(Z_{\rm D} \rightarrow \mu)$
20	50	0.1475
40	50	0.1370
40	500	0.1370
60	50	0.1066
60	500	0.1066

Higgs to long-lived dark photons

 $p \qquad H \rightarrow Z_D Z_D \qquad \mu$ $H \qquad \int_{H} \int_{Z_D} \int_{Z$

l cosmic-muons. .1066.

Di-muon invariant mass

8

Long-lived particles in displaced di-muon vertices

 10^{7}

cτ [cm]

9

 $\sigma(pp \to H) \times B(H \to Z_D Z_D) \times B(Z_D \to \mu^+ \mu^-)$

Higgs to long-lived dark photons

Exclusion contour on the kinetic mixing

Displaced Hadronic Jets

- Main background: SM multijet production.

• HLSP: hidden lightest stable particle

ATL-PHYS-PUB-2020-007

• Higgs and heavy boson decay to collimated hadrons via long-lived dark photons: $m_H = 125$, 800 GeV, $m_{\gamma_A} = 0.4$ GeV.

Displaced Hadronic Jets

- Higgs and heavy boson decay to collimated hadrons via long-lived dark photons: $m_H = 125$, 800 GeV.
- Main background: SM multijet production.

2022-2023 Results using full Run 2 139 fb^{-1}: • Dark Photon from Higgs Boson decay: \Rightarrow H \rightarrow Z_dZ_d, (or ZZ_d) \rightarrow 4 ℓ . \Rightarrow (VBF, ZH and ggF) H $\rightarrow \gamma \gamma_d$. \Rightarrow (VBF, ggF and WH) light LLP H $\rightarrow 2\gamma_d + X$. • Dark Photon in rare Z boson decays.

JHEP 03 (2022) 041

<u>JHEP 03 (2022) 041</u>

 $H \rightarrow ZZ_d \rightarrow 4\ell$

- Massive Dark-Photon: ggF production, prompt decay of Z_d and m_{4L} consistent with 125 GeV.
- $H \rightarrow Z_d Z_d \rightarrow 4\ell$ channel is sensitive to the Higgs portal through k (mixing of H and s (dark H))
- Two Dark Photon mass ranges: LM (1 GeV < m_{Z_d} < 15 GeV) and HM (15 GeV < m_{Z_d} < 60 GeV).
- The $H \rightarrow Z_d Z_d$ vertex factor is proportional to κ .

 $H \rightarrow Z_d Z_d \rightarrow 4\ell$

Dark Photon in H $\rightarrow \gamma \gamma_d$

Dark Photon in H $\rightarrow \gamma \gamma_d$

- Both massless and massive dark photons could give rise to same signature: resonant $\gamma + E_T^{miss}$ signature

evidence of new physics coupled to both the SM and DS.

$H \rightarrow \gamma \gamma_d$ massless dark photon production mechanism

arxiv:2206.05297

• The discovery of $H \rightarrow \gamma \gamma_d$ signature would be a direct observation of long-range forces in the DS and an indirect

Could provide a potential explanation for astrophysical positron excess and small-scale structure formation problems.

- Trigger: single-photon
- Dominant background: $V\gamma + jets (W(\rightarrow \ell \nu)(+ \gamma) + jets and Z(\rightarrow \nu \nu)(+ \gamma) + jets)$

VBF H $\rightarrow \gamma \gamma_d$

Η

- ✓ Signal: $ZH, Z \rightarrow \ell^+ \ell^-$ and $H \rightarrow \gamma \gamma_d$ (undetected dark photo
- ✓ Trigger: single and dilepton
- ✓ BDT (XGBoost) is used as discriminator to enhance the analysis sensitivity.
- ✓ Background estimation:
- * Fake E_T^{miss} : $Z\gamma + jets$, $Z + jets \Rightarrow$ Data-driven ABCD
- $*e \rightarrow \gamma$ fake: VV, VVV \Rightarrow Data-driven fake rate and probe-electron CR * top, VVy, Wy, Higgs: MC estimated with validations in CR, VR.

$$H \rightarrow \gamma \gamma_d$$

JHEP07(2023)133

on
$$\rightarrow E_T^{miss}$$
).

Observed (expected) exclusion limits at 95% CL on the BR(H $\rightarrow \gamma \gamma_d$) as a function of the dark photon mass: are found to be within the [2.19-2.52]% ([2.71-3.11]%) range.

Production	ZH	VB
ATLAS	2.3 (2.8)%	1.8 (1
CMS	4.6 (3.6)%	3.5 (2

ggF and new VBF H $\rightarrow \gamma \gamma_d$

Reinterpretation of the ATLAS mono-photon ($\gamma + E_T^{miss}$) to search for dark photons in high-mass resonances.

- E_{T}^{miss} trigger limits the reach for low masses.

Light LLP H $\rightarrow 2\gamma_d + X$.

WH and ggF light LLP in H $\rightarrow 2\gamma_d + X$

- Small values of the kinetic mixing parameter: $\epsilon < 10^{-5} \rightarrow \text{long-lived } \gamma_d, \text{ m}(\gamma d) \in [0.4, 2] \text{ GeV}$
- Resulting fermions may be electrons, muons, hadrons depending on the dark photon mass.
- Two production modes ggF and WH.

WH channel:

- Signature: at least one dark-photon jets (DPJs) (collimated group of fermions) and 1 charged lepton
- Background from W+jets and punch-through jet.
- Single-lepton trigger.

ggF channel:

- Signature: at least two dark-photon jets (DPJs) (collimated group of fermions) and no charged leptons
- Background from multi-jet production, cosmic-ray muons.
- MS and calorimeter-based trigger

WH and ggF light LLP in H $\rightarrow 2\gamma_d + X$

Br > 1% is excluded for 10 mm < $c\tau$ < 250 mm and 0.4 GeV < m_{γ_d} < 2 GeV

VBF light LLP in H $\rightarrow 2\gamma_d + X$

- **Signature**: at least one dark-photon jets (DPJs) (collimated group of fermions)
- A dark coupling equal to $\alpha d \leq 0.01$ and Small values of the kinetic mixing parameter,

 $\epsilon < 10^{-5} \rightarrow \text{long-lived } \gamma_d, \text{ m}(\gamma d) \in [0.1, 15] \text{ GeV}$

- Resulting fermions may be electrons, muons, hadrons depending on the dark photon mass.
- MS and calorimeter-based trigger
- Background from multi-jet, V + jets and cosmic-ray muons estimated using D-D techniques.

 $c\tau_{V_d}$ [mm]

 $c\tau_{\gamma_d}$ [mm]

VBF light LLP in H $\rightarrow 2\gamma_d + X$

Dark Photon in rare Z boson decays.

Dark photons in rare Z boson decays

- First search for a dark photon and dark Higgs boson produced via the dark Higgs-strahlung process in rare Z boson decays at the LHC: $Z \rightarrow A' h_D$ with $m_{A'} + m_{h_D} < m_Z$.
- Model parameter: ϵ , α_D , $M_{A'}$, M_{h_D}
- Dark photon A' is the lightest particle in the DS, $A' \rightarrow f\bar{f}(SM)$
- pp \rightarrow Z \rightarrow A' h_D \rightarrow A'A'A'(*) \rightarrow 4l + X (at least two SFOS lepton pairs)
- Sensitive to $\alpha_{d}\epsilon^{2}$, the coupling of A' to h_{D} times the effective coupling of A' to SM particles .
- Dominant background: $qq \rightarrow 4l$ estimated in a dedicated control region.
- Minimum likelihood fit to the average $\bar{\mathbf{m}}_{II}$, with no excess over SM predictions.

PhysRevLett.131.25

 \sim

Upper limits on $\sigma \times Br$ for

Observed 90% CL upper limits on $\alpha_{d}\epsilon^{2}$, as a function of mA', compared to the results from Belle.

Observed 90% CL upper limits on $\epsilon^2(\alpha_d = 0.1)$, as a function of mA'. Compared to the LHCb and CMS results.

$\sqrt{s} = 8 - 13$ TeV, 20.3 - 139 fb⁻¹ dark photon summary plot

The masses of the intermediate dark fermions predicted by the model are chosen to be lighter w-r-t the Higgs boson mass and far from the kinematic threshold for the production of the γd and the HLSP.

Three different ATLAS analyses are shown for different assumptions on the H \rightarrow 2 γ d+X (0.1% - 50%).

- Many signatures were explored thanks to excellent detector performance.
- Massless and massive dark photons both are considered in ATLAS searches.
- Wide range of parameter space and models covered by ATLAS, but no hint so far.
- Upper limits at 95% CL are set on branching ratios and model parameters (coupling, mass, lifetime).
- More efforts are ongoing with extended datasets (Run2 + Run 3), new signatures/ideas and more combinations.
- No significant excess of events above SM background prediction with the LHC Run 2 data.
- Stay tuned for new Run 3 ATLAS dark photon results and Run 2 combinations.

