Recasting Park Photon Searches

Roadmap of Dark Matter model for Run 3, May 15, 2024

Yotam Soreq

Portals to hidden sector

Portals to hidden sector

typically weak coupling

Portals to hidden sector

dark photons, $B - L, L_{\mu} - L_{\tau}$ Higgs mixing, axion or axion-like-particles....

hidden sector (unknown)

Dark photon - kinetic mixing

 $-\frac{1}{2} \epsilon F'_{\mu\nu} F^{\mu\nu}$

electromagnetic process

Dark photon - kinetic mixing

 $-\frac{1}{2} \epsilon F'_{\mu\nu} F^{\mu\nu}$

Dark photon - kinetic mixing

electromagnetic process

 $-\frac{1}{2}\epsilon F'_{\mu\nu}F^{\mu\nu}$

dark-photon process

DarkCast recasting dark photon searches for generic spin-1 models

Ilten, YS, Williams, Xue, 1801.04847 Baruch, Ilten, YS, Williams, 2206.08563 https://gitlab.com/darkcast/

assume that the dark photon (kinetic bounds) bounds are given $m_{A'}$, \mathcal{E}

assume that the dark photon (kinetic bounds) bounds are given $m_{A'}$, \mathcal{E}

generic spin-1 model: $g_X \sum \bar{f} \gamma^\mu (x_V^f + \gamma_5 x_A^f) f X_\mu + \sum \mathscr{L}_{X_{\chi\bar{\chi}}}$

assume that the dark photon (kinetic bounds) bounds are given $m_{A'}$, \mathcal{E}

generic spin-1 model: $g_X \sum \bar{f} \gamma^\mu (x_V^f + \gamma_5 x_A^f) f X_\mu + \sum \mathscr{L}_{X_{\chi\bar{\chi}}}$

in principle, can go from any model to any model

E

Beyond the dark photon

master equation:

 $\frac{\sigma_X(m, g_X) \operatorname{BR}_{X \to \mathscr{F}}(m) \varepsilon(\tau_X(m, g_X))}{\sigma_{A'}(m, g_{A'}) \operatorname{BR}_{A' \to \mathscr{F}}(m) \varepsilon(\tau_{A'}(m, g_{A'}))} = 1$

master equation: $\frac{\sigma_X(m, g_X) \operatorname{BR}_{X \to \mathscr{F}}(m) \varepsilon(\tau_X(m, g_X))}{\sigma_{A'}(m, g_{A'}) \operatorname{BR}_{A' \to \mathscr{F}}(m) \varepsilon(\tau_{A'}(m, g_{A'}))} = 1$

 $\varepsilon(\tau_X(m, g_X))$ $\varepsilon(\tau_{A'}(m, g_{A'})) \qquad \sigma_{A'}(m, g_{A'})$

 $\sigma_X(m, g_X)$

X and the experiment

master equation: $\frac{\sigma_X(m, g_X) \operatorname{BR}_{X \to \mathscr{F}}(m) \varepsilon(\tau_X(m, g_X))}{\sigma_{A'}(m, g_{A'}) \operatorname{BR}_{A' \to \mathscr{F}}(m) \varepsilon(\tau_{A'}(m, g_{A'}))} = 1$

 $\varepsilon(\tau_X(m, g_X))$ $\varepsilon(\tau_{A'}(m, g_{A'})) \qquad \sigma_{A'}(m, g_{A'})$

 $\sigma_X(m, g_X)$

X and the experiment

 $\mathrm{BR}_{X\to\mathscr{F}}(m)$ $\mathrm{BR}_{A' \to \mathscr{F}}(m)$ only X dependent

Ratio of branching ratios

for $m_X < 2 \,\text{GeV}$ and decay to hadrons?

Ratio of branching ratios

for $m_X < 2 \text{ GeV}$ and decay to hadrons? use data + $U(3)_{\text{flavor}}$

Ratio of branching ratios

for $m_X < 2 \text{ GeV}$ and decay to hadrons? use data + $U(3)_{\text{flavor}}$

vector current - $\bar{q}\gamma_{\mu}q: e^+e^- \rightarrow \text{hadrons}$ axial current - $\bar{q}\gamma_{\mu}\gamma_{5}q$: hadronic τ decays + $U(3)_{\text{flavor}}$

Ratio of branching ratios

Ratios of branching ratios

Ratios of branching ratios

Ratios of branching ratios

mass [GeV]

neglecting $\mathcal{O}\left(m_e^2/m_X^2\right)$

e-bream+annihilation: $\frac{\sigma(e^+e^- \to \gamma X)}{\sigma(e^+e^- \to \gamma A')} = \frac{\sigma(eZ \to eZX)}{\sigma(eZ \to eZX)} = \frac{g_X^2}{(\varepsilon e)^2} \left[(g_A^e)^2 + (g_V^e)^2 \right]$

e-bream+annihilation:
$$\frac{\sigma(e^+e^- \to \gamma X)}{\sigma(e^+e^- \to \gamma A')} = \frac{\sigma(eZ \to eZX)}{\sigma(eZ \to eZX)} = \frac{g_X^2}{(\varepsilon e)^2} \left[(g_A^e)^2 + (g_V^e)^2 \right]$$
p-bream:
$$\frac{\sigma(eZ \to eZX)}{\sigma(eZ \to eZX)} = \frac{g_X^2}{(\varepsilon e)^2} \left[(2x_V^u + x_V^d)^2 + (2x_A^u + x_A^d)^2 \left(\frac{F_A(m_X)}{F_V(m_X)}\right)^2 \right]$$

neglecting $\mathcal{O}\left(m_e^2/m_X^2\right)$

e-bream+annihilation:
$$\frac{\sigma(e^+e^- \to \gamma X)}{\sigma(e^+e^- \to \gamma A')} = \frac{\sigma(eZ \to eZX)}{\sigma(eZ \to eZX)} = \frac{g_X^2}{(\varepsilon e)^2} \left[(g_A^e)^2 + (g_V^e)^2 \right]$$

$$p\text{-bream: } \frac{\sigma(eZ \to eZX)}{\sigma(eZ \to eZX)} = \frac{g_X^2}{(\varepsilon e)^2} \left[(2x_V^u + x_V^d)^2 + (2x_A^u + x_A^d)^2 \left(\frac{F_A(m_X)}{F_V(m_X)}\right)^2 \right]$$

Drell-Yan:
$$\frac{\sigma(\mathrm{DY} \to X)}{\sigma(\mathrm{DY} \to A')} = \sum_{q} \frac{\sigma(q\bar{q} \to \gamma^*)}{\sigma(\mathrm{DY} \to \gamma^*)} \frac{\sigma(q\bar{q} \to \gamma^*)}{\sigma(\mathrm{$$

neglecting $\mathcal{O}\left(m_e^2/m_X^2\right)$

 $\frac{\sigma(q\bar{q} \to X)}{\sigma(q\bar{q} \to A')}$

e-bream+annihilation:
$$\frac{\sigma(e^+e^- \to \gamma X)}{\sigma(e^+e^- \to \gamma A')} = \frac{\sigma(eZ \to eZX)}{\sigma(eZ \to eZX)} = \frac{g_X^2}{(\varepsilon e)^2} \left[(g_A^e)^2 + (g_V^e)^2 \right]$$

$$p\text{-bream: } \frac{\sigma(eZ \to eZX)}{\sigma(eZ \to eZX)} = \frac{g_X^2}{(\varepsilon e)^2} \left[(2x_V^u + x_V^d)^2 + (2x_A^u + x_A^d)^2 \left(\frac{F_A(m_X)}{F_V(m_X)}\right)^2 \right]$$

Drell-Yan:
$$\frac{\sigma(\mathrm{DY} \to X)}{\sigma(\mathrm{DY} \to A')} = \sum_{q} \frac{\sigma(q\bar{q} \to \gamma^*)}{\sigma(\mathrm{DY} \to \gamma^*)} \frac{\sigma(q\bar{q} \to \gamma^*)}{\sigma(\mathrm{DY} \to \gamma^*)} \frac{\sigma(q\bar{q} \to \gamma^*)}{\sigma(\mathrm{DY} \to \gamma^*)}$$

neglecting $\mathcal{O}\left(m_e^2/m_X^2\right)$

 $\frac{\sigma(q\bar{q} \to X)}{\sigma(q\bar{q} \to A')}$

fractions from MC

e-bream+annihilation:
$$\frac{\sigma(e^+e^- \to \gamma X)}{\sigma(e^+e^- \to \gamma A')} = \frac{\sigma(eZ \to eZX)}{\sigma(eZ \to eZX)} = \frac{g_X^2}{(\varepsilon e)^2} \left[(g_A^e)^2 + (g_V^e)^2 \right]$$

$$p\text{-bream: } \frac{\sigma(eZ \to eZX)}{\sigma(eZ \to eZX)} = \frac{g_X^2}{(\varepsilon e)^2} \left[(2x_V^u + x_V^d)^2 + (2x_A^u + x_A^d)^2 \left(\frac{F_A(m_X)}{F_V(m_X)}\right)^2 \right]$$

Drell-Yan:
$$\frac{\sigma(\mathrm{DY} \to X)}{\sigma(\mathrm{DY} \to A')} = \sum_{q} \frac{\sigma(q\bar{q} \to \gamma^*)}{\sigma(\mathrm{DY} \to \gamma^*)} \frac{\sigma(q\bar{q} \to \gamma^*)}{\sigma(\mathrm{DY} \to \gamma^*)} \frac{\sigma(q\bar{q} \to \gamma^*)}{\sigma(\mathrm{DY} \to \gamma^*)}$$

neglecting $\mathcal{O}\left(m_e^2/m_X^2\right)$

vector meson decay $V \to XP$: $\frac{\Gamma_{V \to XP}}{\Gamma_{V \to A'P}} =$

$$= \frac{g_X^2}{(\varepsilon e)^2} \frac{\left|\sum_{V'} \operatorname{Tr}[T_V T_P T_{V'}] \operatorname{Tr}[T_{V'} Q_X] BW_{V'}(m_X)\right|^2}{\left|\sum_{V'} \operatorname{Tr}[T_V T_P T_{V'}] \operatorname{Tr}[T_{V'} Q] BW_{V'}(m_X)\right|^2}$$

vector meson decay $V \to XP$: $\frac{\Gamma_{V \to XP}}{\Gamma_{V \to A'P}}$

$$\frac{1}{V \to XP} = \frac{g_X^2}{(\varepsilon e)^2} \frac{\left| \sum_{V'} \text{Tr}[T_V T_P T_{V'}] \text{Tr}[T_{V'} Q_X] \text{BW}_{V'}(m_X) \right|^2}{\left| \sum_{V'} \text{Tr}[T_V T_P T_{V'}] \text{Tr}[T_{V'} Q] \text{BW}_{V'}(m_X) \right|^2}$$

$$U(3)_{\text{flavor}} \text{ mixing}$$

vector meson decay $V \to XP$: $\frac{\Gamma_{V \to XP}}{\Gamma_{V \to A'P}} =$

 $U(3)_{\rm flavor}$

$$= \frac{g_X^2}{(\varepsilon e)^2} \frac{\left|\sum_{V'} \operatorname{Tr}[T_V T_P T_{V'}] \operatorname{Tr}[T_{V'} Q_X] BW_{V'}(m_X)\right|^2}{\left|\sum_{V'} \operatorname{Tr}[T_V T_P T_{V'}] \operatorname{Tr}[T_{V'} Q] BW_{V'}(m_X)\right|^2}$$
Have mixing Bright-Wight

gner

vector meson decay $V \to XP$: $\frac{\Gamma_{V \to XP}}{\Gamma_{V \to A'P}}$

 $U(3)_{f}$

radiative meson decay $V \to XP$: $\frac{\Gamma_{P \to X\gamma}}{\Gamma_{P \to A'\gamma}} =$

$$= \frac{g_X^2}{(\varepsilon e)^2} \frac{\left|\sum_{V'} \operatorname{Tr}[T_V T_P T_{V'}] \operatorname{Tr}[T_{V'} Q_X] \operatorname{BW}_{V'}(m_X)\right|^2}{\left|\sum_{V'} \operatorname{Tr}[T_V T_P T_{V'}] \operatorname{Tr}[T_{V'} Q] \operatorname{BW}_{V'}(m_X)\right|^2} \operatorname{Bright-Wig}$$

$$= \left(\frac{g_X}{\varepsilon e}\right)^2 \frac{\left|\sum_{V} \operatorname{Tr}[T_P Q T_V] \operatorname{Tr}[T_V Q_X] \operatorname{BW}_{V}(m)\right|^2}{\left|\sum_{V} \operatorname{Tr}[T_P Q T_V] \operatorname{Tr}[T_V Q] \operatorname{BW}_{V}(m)\right|^2}$$

Iner

vector meson decay $V \to XP$: $\frac{\Gamma_{V \to XP}}{\Gamma_{V \to A'P}} =$

 $U(3)_{f}$

radiative meson decay $V \to XP$: $\frac{\Gamma_{P \to X\gamma}}{\Gamma_{P \to A'\gamma}} =$

$$V - X \text{ mixing: } \frac{\sigma_{V \to X}}{\sigma_{V \to A'}} = \frac{g_X^2}{(\varepsilon e)^2} \times \begin{cases} (x_V^u - x_V^d)^2 & \text{for } V = \rho, \\ 9(x_V^u + x_V^d)^2 & \text{for } V = \omega, \\ 9(x_V^s)^2 & \text{for } V = \phi, \end{cases}$$

$$= \frac{g_X^2}{(\varepsilon e)^2} \frac{\left|\sum_{V'} \operatorname{Tr}[T_V T_P T_{V'}] \operatorname{Tr}[T_{V'} Q_X] \operatorname{BW}_{V'}(m_X)\right|^2}{\left|\sum_{V'} \operatorname{Tr}[T_V T_P T_{V'}] \operatorname{Tr}[T_{V'} Q] \operatorname{BW}_{V'}(m_X)\right|^2} \operatorname{Bright-Wig}$$

$$= \left(\frac{g_X}{\varepsilon e}\right)^2 \frac{\left|\sum_{V} \operatorname{Tr}[T_P Q T_V] \operatorname{Tr}[T_V Q_X] \operatorname{BW}_{V}(m)\right|^2}{\left|\sum_{V} \operatorname{Tr}[T_P Q T_V] \operatorname{Tr}[T_V Q] \operatorname{BW}_{V}(m)\right|^2}$$

gner

signature	$\frac{\varepsilon(\tau_X(m, g_X))}{\varepsilon(\tau_{A'}(m, g_{A'}))}$	
invisible		
prompt		
displaced (long-lived)		

signature	$\frac{\varepsilon(\tau_X(m, g_X))}{\varepsilon(\tau_{A'}(m, g_{A'}))}$	
invisible	$\thickapprox 1$	
prompt		
displaced (long-lived)		

signature	$\frac{\varepsilon(\tau_X(m, g_X))}{\varepsilon(\tau_{A'}(m, g_{A'}))}$
invisible	$\thickapprox 1$
prompt	$1 - e^{-\tilde{t}/\tau_X}$
displaced (long-lived)	

$\epsilon(\tau'_A) \approx 1$

signature	$\frac{\varepsilon(\tau_X(m, g_X))}{\varepsilon(\tau_{A'}(m, g_{A'}))}$
invisible	$\thickapprox 1$
prompt	$1 - e^{-\tilde{t}/\tau_X}$
displaced (long-lived)	$\frac{e^{-\tilde{t}_0/\tau_X} - e^{-\tilde{t}_1/\tau_X}}{e^{-\tilde{t}_0/\tau_{A'}} - e^{-\tilde{t}_1/\tau_{A'}}}$

$$\varepsilon(\tau'_A) \approx 1$$

$$\tilde{t}_1 = \tilde{t}_0 (1 + L_{dec}/L_{sh})$$
$$\varepsilon_{max}^2 \epsilon [\tau_{A'}(\varepsilon_{max}^2)] = \varepsilon_{min}^2 \epsilon [\tau_{A'}(\varepsilon_{min}^2)]$$

(finding the average boost) LHCb provides the expected limits

Examples

Dark photon

visible final states

B-L gauge boson

visible final states

Axial coupling

- Recasting of dark photon searches can be easily done by DarkCast for spin-1 models. on dark photon reach.

•Can be also use for assign projection for different models based

In principle, other BSM scenarios can be recasting on similar way.

https://gitlab.com/darkcast/

backups

more models

visible final states

visible final states

Chiral-couplings

visible final states

visible final states

Le-Lnu coupling

visible final states

Le-Ltau coupling

Lmu-ltau coupling

visible final states

Protophobic boson

visible final states

True muonium

True muonium at LHCb true muonium (\mathcal{TM}) = $\mu^+\mu^-$ bound state

Never observed!

True muonium at LHCb true muonium (\mathcal{TM}) = $\mu^+\mu^-$ bound state

- Never observed!
- the 1³S₁ state (spin-1) is a "dark photon" like state $m_{\mathcal{TM}} = 2m_{\mu} - B_E \approx 211 \,\mathrm{MeV}$ $\mathscr{L} \supset \frac{\varepsilon}{2} F_{\mu\nu} F^{\prime\mu\nu}$ $\varepsilon_{\text{T}} = \alpha^2/2 \approx 2.7 \times 10^{-5}$

but it is dissociated due to muons detector material interaction

similar search strategy as dark photon

True muonium at LHCb true muonium (\mathcal{TM}) = $\mu^+\mu^-$ bound state

similar search strategy as dark photon

dominant production

 $\eta \to \gamma \, \mathcal{TM} \to \gamma \, e^+ e^-$

 $c\tau_{\mathcal{TM}} \approx 0.53 \,\mathrm{mm}, \,\sigma_{m_{ee}} \approx 20 \,\mathrm{MeV}$

True muonium at LHCb

True muonium at LHCb

dominant production

 $\eta \to \gamma \mathcal{TM} \to \gamma e^+ e^-$

 $c\tau_{\mathcal{TM}} \approx 0.53 \,\mathrm{mm}, \,\sigma_{m_{oo}} \approx 20 \,\mathrm{MeV}$

expect $5\sigma_{\text{stat}}$ (discovery) within next LHCb run (15 fb⁻¹)

