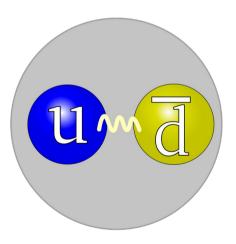


Strongly-interacting dark sectors and dark matter relic density: an overview

Felix Kahlhoefer Roadmap of Dark Matter Models for Run 3

Strongly-interacting dark sectors

Focus of this talk: QCD-like dark sectors (mostly SU(N) theories with $N_f < 3 N_c$)


At high energies: dark sector **contains dark gluons and dark quarks:**

$$\mathcal{L} = -\frac{1}{4} F^a_{\mu\nu} F^{\mu\nu a} + \overline{q}_{\rm d} i D \hspace{-.05cm}/ q_{\rm d} - \overline{q}_{\rm d} M_q q_{\rm d}$$

Quark masses small or comparable to confinement scale Λ_d

- At low energies: Confinement into dark mesons and baryons
- In case of particle-antiparticle asymmetry, dark baryons could be DM, otherwise they annihilate away

Cline & Perron, arXiv:2204.00033

Stable dark pions

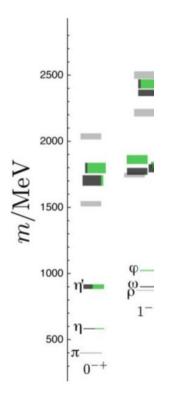
- In principle, all dark mesons could be unstable (as in QCD) \rightarrow no DM candidate
- More appealing: Stabilisation mechanism
 - Option 1: Abelian U(1)' gauge symmetry
 - Different charges for different dark quarks (e.g. +1 for up-type and –1 for down-type quarks)

 \rightarrow

- Dark mesons of type ud or du carry U(1)' charge
- Lightest such mesons (dark pions) must be stable
- Option 2: Global discrete symmetry (G-parity)
 - Also neutral dark pions can be stabilised

u	ū	d	d	π^{o}
$-\overline{d}$	– d	ū	u	$-\pi^{0}$

Describing dark mesons

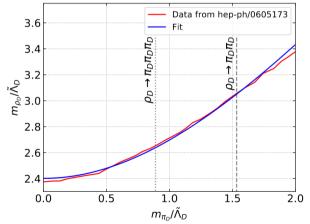


Low-energy theory features many different states

- Dark pions (Pseudo-Goldstone bosons of chiral symmetry breaking)
- Dark rho mesons (spin-1)

- Apparently many free parameters:
 - Masses of various dark mesons (dark pions, dark rho mesons, ...)
 - Interactions between them
 - Interactions with SM particles

Great complexity! Need some guidance...


Crucial connections

But high energy theory has only 3 parameters (for given number of colours and flavours):

- Dark quark mass (assuming degenerate states)
- Dark gauge coupling
- Coupling to mediator (e.g. U(1)' gauge boson)
- Low-energy pheno determined by one dimensionful parameter (e.g. m_{π}) and one dimensionless ratio (e.g. m_{π}/Λ_d)
 - Dark rho meson mass determined from lattice simulations
 - Coupling between ρ_d and π_d determined by KSRF relation
 - Couplings to mediator follow from group theory

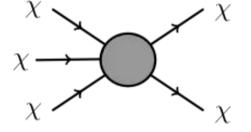
What constrains the dark pion mass?

Need input from astrophysics and cosmology

Bullet Cluster excludes DM self-interaction cross sections larger than ~2 cm²/g (= 4 barn/GeV)

Dark pions have
$$\sigma_{\rm c}=rac{3}{64\pi}rac{m_\pi^2}{f_\pi^4}(1+\mathcal{O}(N_{f_D}^{-2}))$$

- Consider sizable dark quark masses, such that m_{π} and f_{π} are not too different
 - \rightarrow Dark pion masses below ~100 MeV excluded



Dark pion relic density calculation

Conceptually simplest way for dark pions to evolve in the early universe: Number-changing processes $(3\pi_d \rightarrow 2\pi_d)$ induced by the Wess-Zumino-Witten term

$$\frac{2N_{\rm d}}{15\pi^2 f_{\pi}^5} \epsilon^{\mu\nu\rho\sigma} \mathrm{Tr} \left(\pi \partial_{\mu}\pi \partial_{\nu}\pi \partial_{\rho}\pi \partial_{\sigma}\pi\right)$$

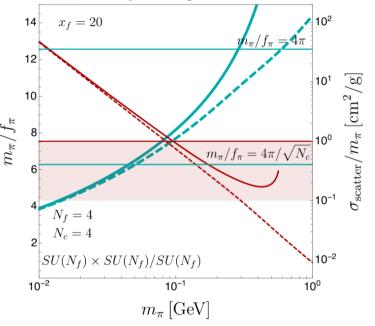
- Rest mass converted into kinetic energy
- Kinetic energy transferred to SM via scattering
- Relic density determined by freeze-out of number-changing processes

→ SIMP mechanism

Hochberg et al., arXiv:1402.5143

Miracle or no miracle?

- Amazingly, the well-known literature result for the SIMP cross section is wrong by a factor of 3
 - Reason: Naive non-relativistic limit leads to an expression that is not Lorentz-invariant


Kamada et al., arXiv:2210.0139:

(N)NLO corrections can be large \rightarrow lattice needed!

Hansen et al., arXiv:1507.01590; Dengler et al., arXiv:2405.06506

- General conclusion: SIMP mechanism requires dark pion masses of 10–100 MeV
 - Tension with Bullet Cluster bound
 - Requires $m_{\pi} / f_{\pi} \sim 4\pi$ (close to perturbative bound)

Cyan: m_{π}/f_{π} required by relic density Red: Corresponding cross section

10²

 m_{π} (MeV)

10²

10

10-

10

 $\frac{m_{\pi}}{f_{\pi}}$

17/05/2024

9

Strongly-interacting dark sectors and dark matter relic density: an overview

Possible ways forward

Assume resonant enhancement of $3 \rightarrow 2$ cross section through exchange of on-shell dark meson

 $c_1 - c_2 = -1$, $c_3 = 1$, $\epsilon_V = 0.1$, $m_V \sim 2m_{\pi}$

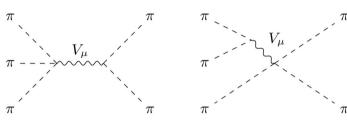
Choi et al., arXiv:1801.07726

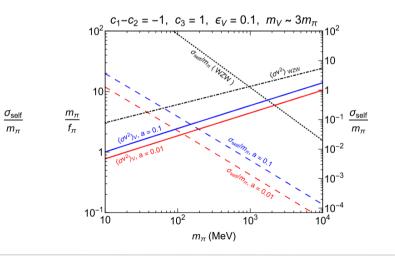
 10^{2}

10

10-1

 10^{-2}

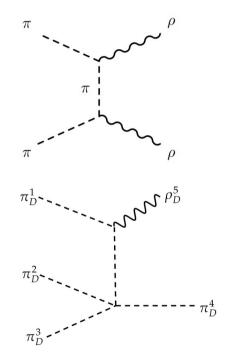

10⁻³


 10^{4}

 m_{π}

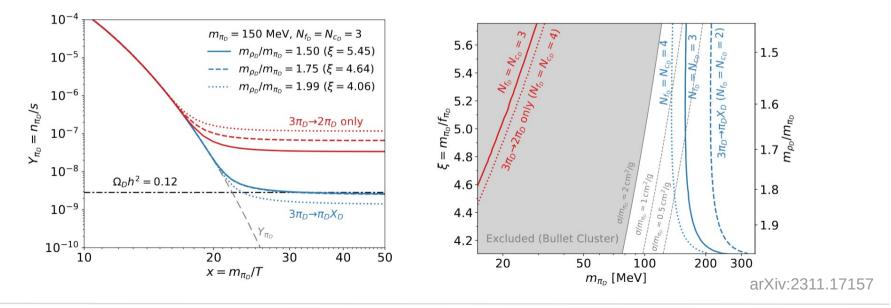
Requires tuning but relaxes Bullet Cluster constraint

 10^{3}


Dark rho mesons in the final state

- $\begin{array}{ccc} 2\pi_d \rightarrow \pi_d + \rho_d \end{array} \qquad \qquad \text{Berlin et al., arXiv:1801.05805} \end{array}$
 - Requires anomalous interaction and violates G-parity
- $\blacksquare 2\pi_d \rightarrow 2\rho_d \qquad \qquad \text{Bernreuther, FK et al., arXiv:1907.04346}$
 - Requires non-zero kinetic energy in the initial state
 - Annihilation rate exponentially suppressed for small temperatures
 - Requires very small π_d - ρ_d mass difference (problem with chPT validity)
- **3** $\pi_d \rightarrow \pi_d + \rho_d$

Berneuther, FK et al., arXiv:2311.17157


- \blacksquare Kinematically allowed in the non-relativistic limit for m_{ρ} < 2 m_{π}
- No momentum suppression (unlike SIMP process)
- Resonant enhancement for m_{ρ} close to 2 m_{π}

Results

Including the process $3\pi_d \rightarrow \pi_d + \rho_d$ enhances annihilation rate by orders of magnitude Freeze-out delayed, larger masses viable, Bullet Cluster constraint can be evaded

Phenomenological implications

For $m_{\rho} < 2 m_{\pi}$, dark rho mesons cannot decay into pairs of dark pions

But ρ^0 mesons must couple to SM particles for thermalisation

Phenomenological implications

13

17/05/2024

- For $m_{\rho} < 2 m_{\pi}$, dark rho mesons cannot decay into pairs of dark pions
- **But** ρ^0 mesons must couple to SM particles for thermalisation
- Simple example: Assume U(1)' gauge boson Ζ' with kinetic mixing κ
 - At energies below Z' mass: Effective interaction between dark quarks and SM fermions

$$\mathcal{L}_{\mathrm{eff}} \supset \frac{1}{\Lambda^2} \sum_f q_f \bar{f} \gamma^{\mu} f \bar{q}_{\mathrm{d}} \gamma_{\mu} q_{\mathrm{d}} \qquad \Lambda = \frac{m_{Z'}}{\sqrt{\kappa e e_{\mathrm{d}}}}$$

Dark ρ^0 mesons have the same quantum numbers as the Z' gauge boson

Mixing leads to effective coupling
$$\mathcal{L}_{ ext{eff}} \supset \frac{2}{g} \frac{m_{
ho_d}^2}{\Lambda^2} \rho_d^{0\,\mu} \sum_f q_f \bar{f} \gamma_\mu f$$

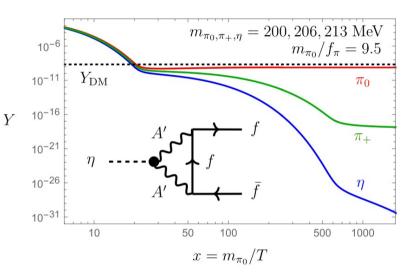
Bernreuther, FK et al., arXiv:2203.08824

Phenomenological implications

- For $m_{\rho} < 2 m_{\pi}$, dark rho mesons cannot decay into pairs of dark pions
- **But** ρ^0 mesons must couple to SM particles for thermalisation
 - \rightarrow Prediction: $\rho^{_0}$ mesons must decay into SM states
 - \rightarrow Semi-visible jets!
- Couplings of ρ^0 to SM particles can be very small
 - \rightarrow Displaced vertices or emerging jets
 - \rightarrow No guarantee for sizable production cross section
- Preferred mass range for dark mesons (well) below 1 GeV
 - \rightarrow Dark shower substructure quite similar to QCD except for fraction of invisible particles

Similar mechanisms with other light states

Dark eta mesons


- Consider quark flavours with different masses
- Dark eta meson heavier than dark pions
- Generally unstable against decays into SM

Katz et al., arXiv:2006.15148

• $X = [\pi \pi]$ bound state (at least in Sp(4))

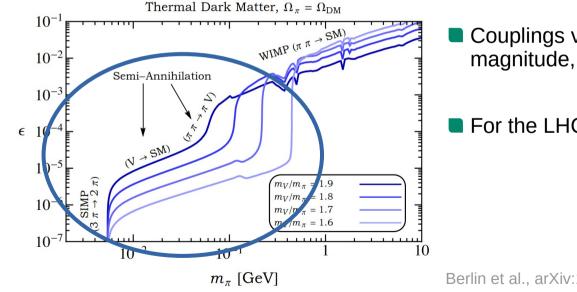
Chu et al., arXiv:2401.12283

EVEN-NUMBERED INT.ODD-NUMBERED INT. π π π π χ π π χ π bound statecatalyzedformation $4 \rightarrow 2$ annihilation $3 \rightarrow 2$ annihilation

Dilaton χ arising from breaking of conformal symmetry (not QCD-like any more!)

Appelquist et al., arXiv:2404.07601

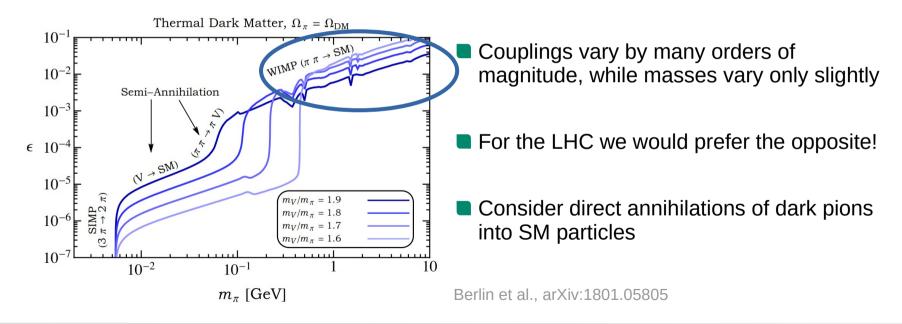
Institute for Theoretical Particle Physics (TTP)


Felix Kahlhoefer

SIMPs as WIMPs?

All scenarios considered so far: relic density requirement places tight constraints on the dark pion mass, but only very weak constraints on the SM couplings

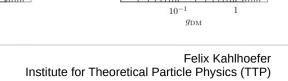
Couplings vary by many orders of magnitude, while masses vary only slightly


For the LHC we would prefer the opposite!

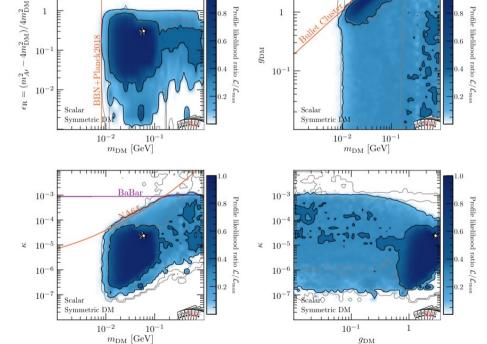
Berlin et al., arXiv:1801.05805

SIMPs as WIMPs?

All scenarios considered so far: relic density requirement places tight constraints on the dark pion mass, but only very weak constraints on the SM couplings

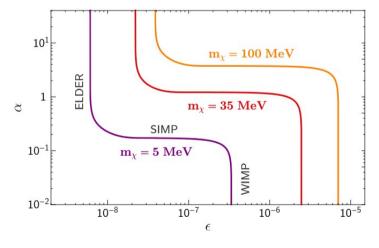

More flexibility in terms of mass, clearer target in terms of couplings

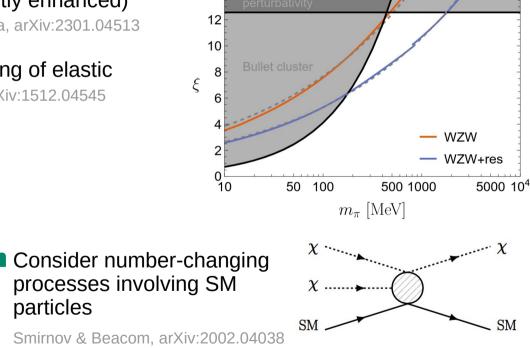
Dark pions as GeV-scale thermal DM


- Many relevant constraints from missing energy searches, rare meson decays, direct detection etc.
- Viable parameter space for complex scalar DM identified in upcoming global fit

Balan, Gray, FK et al., in preparation

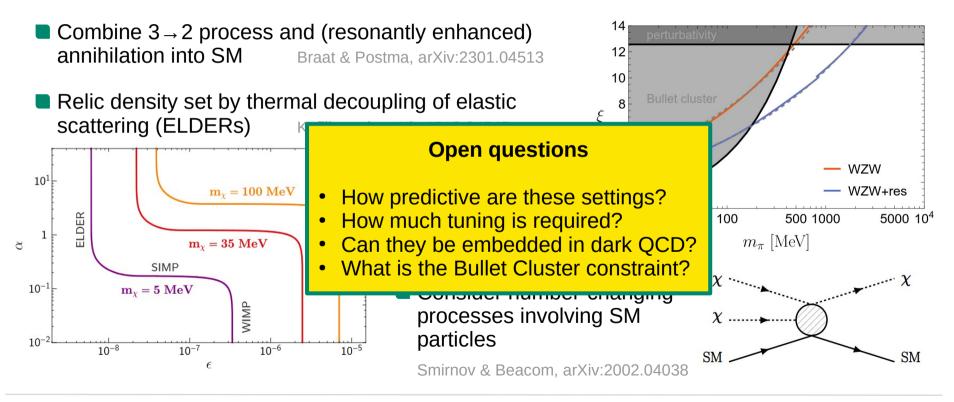
- But: Not all constraints apply to dark pions
- So far no dedicated study (?)





Combination of different interactions

- Combine 3 → 2 process and (resonantly enhanced) annihilation into SM Braat & Postma, arXiv:2301.04513
- Relic density set by thermal decoupling of elastic scattering (ELDERs) Kuflik et al., arXiv:1512.04545



14

Combination of different interactions

20 17/05/2024 Strongly-interacting dark sectors and dark matter relic density: an overview

Conclusions

- QCD-like strongly interacting DM has exciting implications for cosmology and colliders
- Conventional SIMP mechanism in tension with Bullet Cluster constraints
- Many possible modifications using additional states in the dark sector or new interactions
- Simple solution: Annihilations into dark rho mesons with $m_{\rho} < 2m_{\pi}$
 - \rightarrow Dark rho mesons must decay visibly into SM particles
- Interactions between dark and visible sector largely unconstrained
- Interesting to think about alternative relic density mechanisms with tighter connection
 - → WIMP-like annihilations? Resonant annihilations? Co-SIMP mechanism?