

## PROBING NEW SIGNATURES FOR SEMI-VISIBLE JETS AT THE LHC

Cesare Cazzaniga (ETH Zurich)

## UNCONVENTIONAL SIGNATURES: SEMI-VISIBLE JETS



SVJ lays in between di-jet and WIMPs searches: broader resonances (if present) and dominated by QCD background (detector effects) : challenging signature !

## QCD-LIKE DARK SECTORS @ THE LHC



LHC DM WG Workshop 2024



BIG PICTURE OF HIDDEN VALLEYS



Contributors:

**Eur. Phys. J. C 82, 793 (2022)**: C. Cazzaniga, A. de Cosa

**Eur. Phys. J. C 83, 599 (2023)**: H. Beauchesne, C. Cazzaniga, A. de Cosa, C. Doglioni, T. Fitschen, G. Grilli di Cortona, Z. Zhou

## LEPTONS-ENRICHED SIGNATURES FOR SVJS

EXTEND SVJ SIGNATURE: ALLOW DS DECAYS TO LEPTONS AND EXPLOIT NEW EXPERIMENTAL HANDLES



have limited sensitivity to this signal !

LHC DM WG Workshop 2024

**MODELS** (leptophobic Z' portal)

## EXPERIMENTAL HANDLES: INTER-ISOLATION AND DI-LEPTON MASS



## LEPTON FLAVOUR-BASED JET TAGGER FOR SVJau



## SIGNALS HIDING IN LHC RUN2 AND RUN3 DATA





## PHOTONS-ENRICHED SIGNATURES FOR SVJS (SVJ $\gamma$ )

EXTEND SVJ SIGNATURE: ALLOW DS DECAYS TO PHOTONS AND EXPLOIT NEW EXPERIMENTAL HANDLES



MODEL

## SVJ $\gamma$ MODEL IN A NUTSHELL: Z' + VLL + ALP



A coupling to the dark sector  $-Z'_{\mu}\bar{q}_{vi}\gamma^{\mu}(g^{q_{vR}}_{ij}P_R+g^{q_{vL}}_{ij}P_L)q_{vj}$ 

LHC DM WG Workshop 2024

## MODEL PARAMETRIZATION AND BRANCHING RATIOS





- Allow to tune branching to hadrons  $(BR_{had})$  and photons  $(BR_{\gamma})$
- Able to define a **parametric model** that can be mapped to the simplified one

**STRATEGIES** 

## EXPERIMENTAL CONSTRAINTS AND CHALLENGES



 $I_{\gamma}$  = photons isolation, H/E = hadronic vs electromagnetic Calo tower energy



BIG PICTURE OF HIDDEN VALLEYS

Hadronic heavy flavour signatures



Contributors:

- C. Cazzaniga, A. de Cosa, A. Ellaboudy,
- F. Eble, S. Knapen, B. Liu, D. Stolarski

Look also: <u>SVJ workshop WG3</u>

Hadronic heavy-flavoured signatures

## HEAVY-FLAVOURED SIGNATURES FOR SVJS (SVJb)



#### **Experimental features**

- High **displaced vertex** multiplicity
- High displaced tracks multiplicities
- High lepton multiplicities
- Expected soft-drop mass peak



Number of B hadrons per GenJet in all GenJets (R=0.8)

**TECHNIQUES** 

## **B-TAGGING CHALLENGES**



Observed also for TTJ and boosted Z' to bb Why expected inefficiencies ? higher jet pT Boosted/merged objects

- Reduced track reco efficiencies : higher hits density (ambiguous hit-track association or merging)
- Increasing fraction of missing hits in inner layers, **impact Param degradation**
- Many SVs, but more difficult to reconstruct them !



## HANDLES FOR SVJb TAGGING



LHC DM WG Workshop 2024



- SVJb: energy fractions powerful features against gluon and heavy flavour QCD
- SVJb: JSS similar to gluon-QCD



## MAPPING STRONGLY COUPLED DARK SECTORS



GROWING FIELD & UNCHARTED TERRITORIES STILL TO BE EXPLORED !

BIG PICTURE OF HIDDEN VALLEYS



## A HIDDEN VALLEY OF UNCONVENTIONAL SIGNATURES





## **BEYOND CONVENTIONAL SIGNATURES**



HIDDEN VALLEYS PROVIDE NEW UNEXPLORED SIGNATURES DEPENDING ON BOUND STATES LIFE-TIMES AND DECAY MODES

## **CONFINING HIDDEN SECTORS REGIMES**



LHC DM WG Workshop 2024

## CONSTRAINTS ON Z' COUPLING TO LEPTONS



# ALLOWING IN THE CURRENT SVJ MODEL FOR Z' COUPLING TO LEPTONS WOULD INTRODUCE IMPORTANT CONSTRAINTS FROM HIGH MASS DI-LEPTON SEARCHES

(\*) parameters are set consistently with CMS Z' model

## SVJ MODEL: LEPTONIC DECAYS IN SVJ VIA A'

#### PROMPT LEPTONIC DECAYS OF DARK BOUND STATES ALLOWED BY LOWER MASS MEDIATOR A'



LOWER MASS MEDIATOR: OFF-SHELL Z' SUPPRESSED IN DARK BOUND STATES DECAYS ~  $1/M_{Z'}^4$ 

LHC DM WG Workshop 2024

## SIMPLIFIED HIDDEN VALLEY SPECTRUM



FULL HADRONIC SEARCH ASSUMES ONE DARK HADRON MASS SCALE

DEVELOPMENTS IN SNOWMASS 2021-2022 Eur. Phys. J. C (2022)

LHC DM WG Workshop 2024

Cesare Cazzaniga (ETH Zurich) | 17.05.2024 | 25

## DARK SECTOR HADRON MASSES



LATTICE CALCULATION: INPUT DARK CURRENT QUARK MASS AND GET DARK HADRON MASSES (BOTH DIVIDED BY OVERALL SCALE  $\Lambda_d$ )

LHC DM WG Workshop 2024 (\*) Predictions DM spectrum independent from Nc and Nf Cesare Cazzaniga (ETH Zurich) | 17.05.2024 | 26



## INVISIBLE FRACTION

NUMBER OF INVISIBLE DM STATES IMPLEMENTED AS A BRANCHING RATIO



CAPTURES VARIATION IN NUMBER OF DARK FLAVOURS (Nf), NUMBER OF DARK COLORS (Nc) & DARK QUARKS MASS SPLITTING (LUND STRING)

Eur. Phys. J. C 82, 793 (2022) PRD 103, 115013 (2021)

## SVJ MODEL: TWO MESSENGER FIELDS



## SVJau MODEL : SINGLE MESSENGER FIELD



## SVJau Model: Single Messenger Field



## SVJ $\ell$ MODEL : PARAMETERS & CONSTRAINTS



10<sup>-6</sup>

10-7

10

10<sup>-9</sup> 10<sup>-10</sup>

10<sup>-11</sup>

10<sup>-12</sup>

Excluded

- → Dark  $\rho$  mesons inherit A' decay modes ~ 15% democratic decay of unstable  $\rho_v$  to <u>all lepton</u> <u>flavours</u> (from Chiral EFT)
- Prompt signatures allowed above few GeV for dark bound states

LHC DM WG Workshop 2024

10

 $m_{\rho_{\rm V}} \simeq 15 {\rm ~GeV}$ 

m [GeV]

## SVJ $\tau$ MODEL: PARAMETERS & CONSTRAINTS



- → Introduce an **effective branching fraction BR**<sub> $\tau$ </sub> of dark pions to  $\tau$  leptons (controlled by ratio  $g_u/g_{\tau}$ )
- → Invisible fraction not only from stable dark bound states, enhancement from  $\tau$  leptons decays to neutrinos



## MODEL 1: PARAMETERS & CONSTRAINTS

| Parameter                  | Description                  | Benchmark    |  |
|----------------------------|------------------------------|--------------|--|
|                            |                              | <b>-</b> . / |  |
| $M_{Z'}$                   | $Z^\prime$ pole mass         | 0.5-5 TeV    |  |
| $r_{inv}$ (*)              | invisible fraction           | 0.3          |  |
| $\Lambda_v$                | dark confinement scale       | 10 GeV       |  |
| $m_{\pi_v}/\Lambda_v$ (**) | 0.8                          |              |  |
| DD (***                    | huanahing to - lantons       | 0.15, 0.3    |  |
| DR $_{\mathcal{T}}$ (***)  | ) branching to $	au$ leptons | 0.55, 0.7    |  |

\* Neutrinos can be included adding a term  $\propto BR_{\tau} \times (1 - r_{inv})$ \*\* dark hadron masses set using Lattice QCD fits (Nf = 2, Nc = 3):

 $m_{\pi_v} = 8 \text{ GeV}$   $m_{\rho_v} \simeq 25 \text{ GeV}$   $\rho \to \pi \pi \text{ open}$ 

see Eur. Phys. J. C (2022) , and backup

\*\*\* effective parameter controlled by the ratio:  $g_u/g_\tau$ 



#### 2023 LHC DM WG Winter Meeting

## MODEL 2: PARAMETERS & CONSTRAINTS

| Parameter                 | Description              | Benchmark     |
|---------------------------|--------------------------|---------------|
| $M_{Z'}$                  | Z' pole mass             | 1.5–5 TeV     |
| $\epsilon_{ m eff,v}$     | Effective mixing         | 0.03          |
| r <sub>inv</sub>          | Invisible fraction       | 0.3, 0.5, 0.7 |
| $\Lambda_v$               | Dark confinement scale   | 5 GeV         |
| $m_{\pi_v}/\Lambda_v$ (*) | Pseudo-scalar mass ratio | 1.6           |

- ~ 15% democratic decay of unstable  $\rho$  to <u>all lepton flavours</u>
- ← Z' COUPLINGS SETTINGS:  $g_{Z'}^{\nu} = 0.4$ ,  $g_{Z'}^{q} = 0.25$ [ Phys. Dark Univ. 27, 100365 (2020) JHEP 06, 156 (2022) ]
- \* effective mixing fixed saturating  $A' \rightarrow \ell^+ \ell^-$  bounds

\*\* dark hadron masses set using Lattice QCD fits (Nf = 2, Nc = 3):

 $m_{\pi_v} = 8 \text{ GeV}$   $m_{\rho_v} \simeq 15 \text{ GeV}$   $\rho \to \pi \pi \text{ closed}$ 



#### 2023 LHC DM WG Winter Meeting



## LIMITATIONS: CLASSICAL LEPTONS ISOLATIONS

RELATIVE STANDARD ISOLATION (FIXED R)

$$I(\ell) = \frac{1}{p_{T,l}} \sum_{i \neq \ell}^{\Delta R < R_{max}^{iso.}} p_{T}(i)$$



**ISOLATION VETO: LIMITATION FOR ELECTRONS AND MUONS PRODUCED INSIDE JETS** 

RELATIVE MINI-ISOLATION (VARIABLE R) JHEP 1103:059,2011



<u>MINI-ISOLATION VETO</u>: LIMITATION FOR  $e/\mu$  FROM DIRECT DARK BOUND STATES DECAYS (RESONANT SIGNATURE)

## HADRONIC SVJ INCLUSIVE ANALYSIS AS STANDARD CANDLE

Selections

- 1. At least 2 good jets (R = 0.8)
- 2. Large missing momentum aligned to J<sub>1,2</sub>
- 3. Maximum  $\Delta \eta(J_1, J_2)$
- 4. Trigger plateau ( $m_T > 1.5 \text{ TeV}$ )
- 5. Mini-isolated leptons veto

SELECTIONS BASED ON CMS ANALYSIS : JHEP 06, 156 (2022)

#### Dijet transverse mass

$$m_{\rm T}^2 = \left[ E_{\rm T,JJ} + E_{\rm T}^{\rm miss} \right]^2 - \left[ \vec{p}_{\rm T,JJ} + \vec{p}_{\rm T}^{\rm miss} \right]^2$$
$$= m_{\rm JJ}^2 + 2p_{\rm T}^{\rm miss} \left[ \sqrt{m_{\rm JJ}^2 + p_{\rm T,JJ}^2} - p_{\rm T,JJ} \cos(\phi_{\rm JJ,miss}) \right]$$

LHC DM WG Workshop 2024



## HADRONIC SVJ INCLUSIVE ANALYSIS AS STANDARD CANDLE

Preselection requirements  $p_{\rm T}(J_{1,2}) > 200 \,{\rm GeV}, \ \eta(J_{1,2}) < 2.4$  $R_{\rm T} > 0.15$  $\Delta \eta(J_1, J_2) < 1.5$  $m_{\rm T} > 1.5 \,{\rm TeV}$  $N_{\mu} = 0$  $\dot{N_{e}} = 0$ (\*)  $p_{\rm T}^{\rm miss}$  filters  $\Delta R(j_{1,2}, c_{\text{nonfunctional}}) > 0.1$ (\*) Final selection requirements veto  $f_{\gamma}(j_1) > 0.7 \& p_T(j_1) > 1.0 \text{ TeV}$ (\*) veto  $-3.05 < \eta_{\rm j} < -1.35$  &  $-1.62 < \phi_{\rm j} < -0.82$  \* (\*)  $\Delta \phi_{\min} < 0.8$ SELECTIONS FROM CMS ANALYSIS : JHEP 06, 156 (2022)  $m_{T}$ : di-jet transverse mass Variables Legend  $\mathbf{R}_{\mathrm{T}}$  :  $\mathbf{\not{E}}_{\mathrm{T}}/\mathbf{m}_{\mathrm{T}}$ 



## SENSITIVITY ESTIMATION



BUMP HUNT ON A FALLING BACKGROUND IN  $M_T$  SPECTRUM : 1.5 - 5 TeV (HIGH MASS SEARCH) ASYMPTOTIC CLs (J.Phys.G 28 (2002) 2693–2704 , Eur. Phys. J. C (2011) **71**: 1554)

MINIMAL SYSTEMATICS (LOG-NORMAL): LUMINOISITY (2.6 %) & TRIGGER (2 %)

## MINI-ISOLATION VETO



#### SIGNAL BENCHMARK : MZ' = 3 TeV

| Variable                        | Selection           | $\epsilon_{sig},  r_{inv}: 0.3$ | $\epsilon_{sig},  r_{inv}: 0.5$ | $\epsilon_{sig}, r_{inv}: 0.7$ |
|---------------------------------|---------------------|---------------------------------|---------------------------------|--------------------------------|
| $n(good \ AK8)$                 | $\geq 2$            | 67.53                           | 46.69                           | 22.42                          |
| $\Delta \eta_{j0,j1} \ (AK8)$   | $\leq 1.5$          | 45.25                           | 32.80                           | 16.53                          |
| $M_T$ (AK8)                     | $\geq 1500$         | 31.01                           | 18.11                           | 7.45                           |
| $R_T (AK8)$                     | $\geq 0.15$         | 19.22                           | 13.41                           | 6.00                           |
| $\Delta \Phi_{\min}(E_T, Jets)$ | $\leq 0.8$          | 17.61                           | 11.58                           | 4.51                           |
| n Good Mini Iso leptons         | $N_{\mu} = N_e = 0$ | 2.84                            | 2.42                            | 1.37                           |

MINI-ISOLATION LEPTONS VETO USED IN CMS SVJ ANALYSIS IS EXPECTED TO REJECT MOST OF THE SIGNAL (STATEMENT VALID FOR DIFFERENT INVISIBLE FRACTIONS AND MEDIATOR MASSES)

LHC DM WG Workshop 2024

Cesare Cazzaniga (ETH Zurich) | 17.05.2024 | 40

## SVJℓ TARGETED INCLUSIVE APPROACH

#### GOOD OBJECTS

- $\geq$  2 AK8 Jets with  $p_T > 200$  GeV &  $|\eta| < 2.4$
- $p_T(e,\mu) > 10 \text{ GeV } \& |\eta(e,\mu)| < 2.4$
- $d_0(\mu, e) < 100 \ \mu m$ : prompt dark hadrons leptonic decays

#### SELECTIONS

- $R_T > 0.15$  :  $E_T$ -like cut, no  $M_T$  sculpting
- $\Delta \eta(j_1, j_2) < 1.5$  : removes t-channel QCD
- $M_T > 1500$  GeV : trigger requirement
- $\Delta \phi_{min}(j_{1,2}, E_T) < 0.8$  : W/Z + jets suppression
- ♦ Veto events with at least 2 isolated leptons
- Opposite sign non inter-isolated ( $I_{int} > 0.1$ ) leptons pairs

VARIABLES LEGEND

 $M_T$  : di-jet transverse mass

 $R_T: \mathcal{E}_T/M_T$ 

 $d_0$ : transverse impact param.

LHC DM WG Workshop 2024

• = SVJ topology

= additional requirements Cesare Cazzaniga (ETH Zurich) | 17.05.2024 | 41

## SVJ $\ell$ CUT EFFICIENCIES

SIGNAL BENCHMARK : MZ' = 3 TeV

| Variable                            | Selection   | $\epsilon_{sig},  r_{inv}: 0.3$ | $\epsilon_{sig},  r_{inv}: 0.5$ | $\epsilon_{sig},  r_{inv}: 0.7$ |
|-------------------------------------|-------------|---------------------------------|---------------------------------|---------------------------------|
| $n(good \ AK8)$                     | $\geq 2$    | 67.53                           | 46.69                           | 22.42                           |
| $\Delta\eta_{j0,j1}~(AK8)$          | $\leq 1.5$  | 45.25                           | 32.80                           | 16.53                           |
| $M_T (AK8)$                         | $\geq 1500$ | 31.01                           | 18.11                           | 7.45                            |
| $R_T (AK8)$                         | $\geq 0.15$ | 19.22                           | 13.41                           | 6.00                            |
| $\Delta \Phi_{\min}(E_T, Jets)$     | $\leq 0.8$  | 17.61                           | 11.58                           | 4.51                            |
| n non-interIso Good OS lepton pairs | > 0         | 14.01                           | 8.70                            | 2.83                            |

#### BACKGROUNDS

| Variable                                | Selection   | $\epsilon_{QCD}\%$ | $\epsilon_{tar{t}}\%$ | $\epsilon_{Zj}\%$ | $\epsilon_{Wj}\%$ |
|-----------------------------------------|-------------|--------------------|-----------------------|-------------------|-------------------|
| $n(good \ AK8)$                         | $\geq 2$    | 98.16813           | 7.18502               | 1.02670           | 1.58200           |
| $\Delta\eta_{j0,j1}~(AK8)$              | $\leq 1.5$  | 66.54385           | 5.31659               | 0.66615           | 1.09866           |
| $M_T (AK8)$                             | $\geq 1500$ | 15.00132           | 0.15060               | 0.03025           | 0.0227            |
| $R_T (AK8)$                             | $\geq 0.15$ | 0.70012            | 0.03026               | 0.01346           | 0.00692           |
| $\Delta \Phi_{\min}(E_T, Jets)$         | $\leq 0.8$  | 0.68872            | 0.02722               | 0.00753           | 0.00535           |
| * ) n non-interIso Good OS lepton pairs | > 0         | 0.05426            | 0.00243               | 0.00030           | 0.00036           |

#### REMAINING MAJOR BACKGROUND: QCD (HADRONS PROMPT LEPTONIC DECAYS)

LHC DM WG Workshop 2024

(\*) all good lepton pairs are non-isolated

## EXPLOITING DI-LEPTON RESONANCE



#### POSSIBLE STRATEGIES

- ◆ Can select a mass window in m<sub>ll</sub> and fit m<sub>T</sub>
- ♦ Can perform 2D fit  $m_{ll} m_T$
- Can look independently for low mass resonance(s) in the non-isolated di-lepton spectrum
- Model dependent feature: number of resonances depends on dark sector details

## SVJ*L*-TARGETED INCLUSIVE ANALYSIS SENSITIVITY



## LIMITATIONS OF CLASSICAL TRIGGERS

- ◆ Jet HT || pT triggers used by CMS: inherited from high mass di-jet search JHEP 06, 156 (2022)
- ← CMS fully efficient trigger requirement  $m_T > 1.5$  TeV limits sensitivity for SVJ $\tau$  (effect of neutrinos from  $\tau$  decays shifts  $m_T$ to lower values)
- ✦ Hadronic triggers below current thresholds p<sub>T</sub>(500)/H<sub>T</sub>(1050) are prescaled (limited statistics)
- ◆ MET triggers: too high threshold for lowest unprescaled
- $\bullet$  Tau triggers: limited by isolation criteria and soft  $\tau$  leptons in signal

### ARE THERE OTHER POSSIBILITIES ?

#### HADRONIC TRIGGERS



## TOPOLOGICAL TRIGGERS AND BEYOND

#### TOPOLOGICAL TRIGGERS

- ◆ Exploit the s-channel topology at L1:
   ≥ 2 AK4 *p*<sub>T</sub> > 100 GeV & Δη(*j*<sub>1</sub>, *j*<sub>2</sub>) < 2</li>
   reduce hadronic rates prior to HLT
- Promising for lowering HT threshold
- ← Hypothetical target: HT > 600 GeV ( $m_T$  > 800 GeV) [ need full sim ]

#### ... AND BEYOND ?

- Alternative data-taking: Data Parking and Scouting
- Partial Event Building (PEB): can retain full jet substructure for tagging (but fully reconstructing only part of the event)

LHC DM WG Workshop 2024





**Passes:** high  $p_T$  , low  $\Delta \eta$ 

#### TOPOLOGICAL TRIGGERS



## CLASSICAL MET AND TAU TRIGGERS

#### **MET TRIGGERS**





- ✦ MET triggers: too high threshold for lowest unprescaled
- ✦ Single tau triggers: limited by isolation criteria
- ◆ Di-tau triggers: isolation applied to  $\tau$  candidates p<sub>T</sub> < 25 GeV no significant improvement (relatively soft  $\tau$  leptons in signal)

## LEPTON FLAVOUR-BASED JET TAGGER FEATURES

- Set of variables to exploit *e*/μ enriched jet content from leptonic τ decays (~ 35 %)
- ★ 3 main classes of features (per  $e/\mu$ ):
  - 1. Energy/momentum flow,
  - 2. Spatial distributions,
  - 3. Specific isolations (capture leptonic and hadronic boosted di- $\tau$  decays)
- Adaptive BDT (TMVA) trained on a mixture of signal jets hypo (scan over Z' mass and BR<sub>r</sub>)

| Rank | Variable                | Separation             |
|------|-------------------------|------------------------|
| 1    | $I_{inter}(\mu)$        | $2.703 	imes 10^{-1}$  |
| 2    | $R_{Norm}(\mu)$         | $2.601 \times 10^{-1}$ |
| 3    | $I_{\gamma\pi}(\mu)$    | $2.164 	imes 10^{-1}$  |
| 4    | R <sub>Norm</sub> (e)   | $1.786 	imes 10^{-1}$  |
| 5    | l <sub>inter</sub> (e)  | $1.632 \times 10^{-3}$ |
| 6    | Energyfraction(e)       | $7.500 	imes 10^{-2}$  |
| 7    | $I_{\gamma\pi}(e)$      | $7.175 	imes 10^{-2}$  |
| 8    | $p_{T,Norm}(\mu)$       | $6.272 	imes 10^{-2}$  |
| 9    | Energyfraction( $\mu$ ) | $6.220 	imes 10^{-2}$  |
|      |                         |                        |



# R = 1



JET-TAGGER INPUT FEATURES

## LEPTON FLAVOUR-BASED JET TAGGER PERFORMANCE



80%, 84%, 90%, 93% signal jets ( $BR_{\tau} = 0.15, 0.3, 0.55, 0.7$ )

 $Br_{\tau}$ Cesare Cazzaniga (ETH Zurich) | 17.05.2024 49

0.5

0.7

0.82 0.8

1500 0.832419 0.847902 0.873724 0.894327

0.3

0 15

## SVJau-TARGETED ANALYSIS SENSITIVITY

#### CMS SVJ SEARCH



- ◆ NO SENSITIVITY FOR CMS INCLUSIVE HADRONIC STRATEGY: NEED TO EXPLOIT TAU CONTENT FEATURES
- ◆ EXPLOITING BDT JET-CLASSIFICATION : EXCLUSION REACH (DISCOVERY) UP TO ~ 5.5 TeV (~ 4.5 TeV)
- EXPECTED TO OUTPERFORM ANY EXISTING SEARCH: PROBE UNEXPLORED  $g_{\mu}$  COUPLING VALUES

## POSSIBLE B-TAGGING INEFFICIENCIES



Observed also for TTJ and boosted Z' to bb Why expected inefficiencies ? higher jet pT Boosted/merged objects

- Reduced track reco efficiencies : higher hits density (ambiguous hit-track association or merging)
- Increasing fraction of missing hits in inner layers, **impact Param degradation**
- Many SVs, but more difficult to reconstruct them !



## THE HEAVY-FLAVOURED SVJS FEATURES



LHC DM WG Workshop 2024

(\*) Plots to be taken with grain of salt: Delphes reco

## MODEL PARAMETRIZATION AND BRANCHING RATIOS





LHC DM WG Workshop 2024