universitätfreiburg

Unraveling **Dark Matter** with novel collider signatures in Type-I <u>2HDM+a</u>

Roadmap of Dark Matter models for Run 3

May 15, 2024

<u>Ilia Kalaitzidou</u> Spyros Argyropoulos Ulrich Haisch

Motivation

Open question: Dark Matter nature

- Initial simplified DM models: Add a singlet acting as mediator between the visible and dark sectors arXiv:1506.03116
- **Problem**: Unitarity is be violated: Interactions between DM mediator and SM fermions are not gauge invariant arXiv:1510.02110
- Solution: Extend the SM Higgs sector

Two Higgs Doublet Model with an additional pseudoscalar DM mediator 2HDM+a: simplest gauge-invariant and renormalisable extension of the simplified pseudoscalar DM model

→ New channels for particle interaction → More distinctive collider signatures

Previous searches Exclusion m_A-m_a plane

No mass hierarchy: m_A=m_H=m_{H±}

E<sub>T^{miss}+h(bb̄) and E<sub>T^{miss}+Z(ll̄) dominate the sensitivity
</sub></sub>

2HDM Typel

Why Type I?

All previous LHC searches consider only Type II Yukawa sector

 Constraints from flavour physics on charged Higgs mass are very weak in Type I → allow lower H[±] masses

arxiv.1803.01853

2HDM Typel

Why Type I?

→ H[±] should be close to the mass of A or H: Allow smaller m_{H±} → Smaller allowed masses for A/H →
 Explore masses below the SM Higgs mass

A-boson dominant decays

New channel

bb+E_T^{miss} signature

Requirements

0 leptons, exactly 2 b-jets, E_T^{miss} > 150GeV

Reconstruction

- a or Z: Missing transverse momentum
- H candidate: 2 b-jets
- Transverse mass for A candidate: H+E_T^{miss}

Apply cuts to improve sensitivity, similar to the ATLAS $A \rightarrow Z(vv)H(bb)$ analysis arXiv:2311.04033

Calculate sensitivity with m_H

- Complementary exclusion for the phase space where A → Ha decay is not kinematically allowed
- Same cuts and reconstruction as bb+ET^{miss}

Calculate sensitivity with $m_T(A)$

bb+ll signature

 Previous A→ZH→IIbb analyses both in ATLAS and CMS cover m_{bb} above 125 GeV

- Z: OSSF lepton-pair (μ⁺μ⁻/e⁺e⁻)
- H candidate: 2 b-jets
- A candidate: H+Z

Cuts inspired from the ATLAS A→ZH→IIbb analysis arXiv:2011.05639

 Apply m_{bb} window: 0.85m_H -20 < m_{bb} < m_H+20 → Increase sensitivity

Calculate sensitivity with m_A

ZZ+E^{miss} signature

Cuts inspired from the ATLAS IIII+MET analysis arxiv.2107.00404

- Exactly four leptons
- E_T^{miss} > 50 GeV
- m(4l) < 400 GeV

• Transverse mass for **A candidate**: m^{inv}(4I)+E_T^{miss}

Calculate sensitivity with $m_T(A)$

• Exclusion shown for Run2 luminosity except ZZ+E_T^{miss} shown for Run2 + Run3

- Minimum requirement on E_{T}^{miss} sets a lower bound on $m_{A} \geqq 375 \; GeV$
- This restriction could be overcome be employing new techniques like **new b-jet triggers**
- Br(H → bb̄) drops drastically when H→ aa/Za
 becomes kinematically possible
- Expand exclusion to masses below the mass of the SM Higgs boson → Particularly interesting to investigate observed small excess at ~95 GeV

Empty areas in the parameter region can be covered by further signatures such as Z+E_T^{miss}, j+E_T^{miss}, tt

Results

• Allowing larger mass splitting $\Delta m = m_A - m_{H^{\pm}} = 100 \text{ GeV} \rightarrow A \rightarrow H^+W^-$ becomes kinematically possible

Conclusion

2HDM+a of Typel is not yet explored \rightarrow Leads to promising **new signatures Goal**: New benchmarks of uncovered final states \rightarrow **New analyses with Run3 data New decay channels:** A \rightarrow a H(bb), A \rightarrow Z H(aZ) H \rightarrow a A(tt), H \rightarrow H⁺ W

 $b\overline{b}+E_T^{miss}$ and $l\overline{l}b\overline{b}$ expand exclusion to masses below the SM Higgs mass

Novel collider signatures in the type-I 2HDM+a model

arxiv.2404.05704

Spyros Argyropoulos^a Ulrich Haisch^b and Ilia Kalaitzidou^a

Thank you

 ^a Physikalisches Institut, Universität Freiburg, Hermann-Herder Str. 3a, 79104 Freiburg, Germany Freiburg, Germany
 ^b Max Planck Institute for Physics, Föhringer Ring 6, 80805 München, Germany

Back-up slides

Two Higgs doublets H₁, H₂, one pseudoscalar singlet P

One DM mediator

Mixing angles:

α → Mixing of CP-even states (H ⇔ h) **β** → tan $β ≡ \frac{v_2}{v_1}$ **θ** → Mixing of CP-odd states (A ⇔ a)

Couplings

	u-type	d-type	leptons	g _A ^u	g Ad
Type I	H ₂	H ₂	H ₂	1/tanβ	-1/tanβ
Type II	H ₂	H1	H1	1/tanβ	tanβ

Masses: **m**_A, **m**_H, **m**_{H±}, **m**_a, **m**_χ (DM mass)

Constraints on mixing angle θ

Constraints on sinθ from EW precision observables
 sinθ choice affects A branching ratio

We choose small sin0 values of 0.2 and 0.35

Constraints on Model Parameters

• Measurements for $h \rightarrow$ invisible constrain $m_a \gtrsim 100 \text{ GeV}$

• SM Higgs boson couplings \rightarrow tight constraints on cos(β - α): We choose **cos(\beta-\alpha)=0** (alignment limit where h \rightarrow SM Higgs)

Additional constraints:

- Decay widths of BSM (pseudo)scalars should remain small \rightarrow narrow width approximation
- Scalar potential should be bounded from below (BFB) to assure stability

bb+**E**_T^{miss} signature

ATLAS $A \rightarrow Z(vv)H(bb)$ analysis

	Regions						
Requirement	2L (CR)	e μ (C R)	1L (VR)	0L			
				Hlo/Hhi(CR)	Hin (SR)		
Number of jets	2–5						
Number of <i>b</i> -jets	≥ 2						
$m(b\bar{b})$	> 50 GeV						
Number of $ au^{had}$	0						
$p_{\mathrm{T}}(V)$		> 1		GeV			
$\min_i \Delta \phi(\vec{E}_{\rm T}^{\rm miss}, \vec{p}_i^{\rm jet})$	$> \pi/10$						
$AR(h, h_2)$	< 3.3 (2 <i>b</i> -jets)						
$\Delta K(v_1, v_2)$	$< 3.5 (\geq 3 b$ -jets)						
Number of leptons	2		1	0			
Lepton flavour	ee/µµ	eμ	e/µ	-			
$p_{\mathrm{T}}(\ell_1)$	> 27 GeV			-			
$ m_Z^{\text{cand}} - m_Z $	< 10 GeV -						
$\mathcal{S}_{\mathrm{MET}}$	< 5 -		> 3	> 10			
$m_{\rm top}^{\rm near}$	-			> 180 GeV			
m ^{far} _{top}	-			> 200 GeV			
$ m(b\bar{b}) - m_H $	-			$> 0.2 \cdot m_H$	$< 0.2 \cdot m_H$		

bb+ET^{miss} signature Cross-sections in fb

 $\sigma(ggA) \times Br(A \rightarrow ZH) \times Br(Z \rightarrow vv) \times Br(H \rightarrow bb)$

bb+ll signature Previous analyses

• Previous A \rightarrow ZH \rightarrow Ilbb analyses both in ATLAS and CMS cover $m_{b\bar{b}}$ above 125 GeV

bb+ll signature

• A→ZH→llbb in ATLAS

arxiv.2011.05639

Table 1: Summary of the event selection for signal and control regions in the $A \rightarrow ZH \rightarrow \ell\ell bb$ channel.

Single-electron or single-muon trigger Exactly 2 leptons (e or μ) ($p_T > 7$ GeV) with the leading one having $p_T > 27$ GeV Opposite electric charge for $\mu\mu$ pairs; 80 GeV $< m_{\ell\ell, e\mu} < 100$ GeV, $\ell = e, \mu$ At least 2 b-jets ($p_T > 20$ GeV) with one of them having $p_T > 45$ GeV

 $E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}} < 3.5 \ {\rm GeV}^{1/2}, \sqrt{\Sigma p_{\rm T}^2}/m_{\ell\ell bb} > 0.4$

	$n_b = 2$ category	$n_b \ge 3$ category
	Exactly 2 <i>b</i> -tagged jets	At least 3 <i>b</i> -tagged jets
Signal	<i>ee</i> or $\mu\mu$ pair	<i>ee</i> or $\mu\mu$ pair
region	$0.85 \cdot m_H - 20 \text{ GeV} < m_{bb} < m_H + 20 \text{ GeV}$	$0.85 \cdot m_H - 25 \text{ GeV} < m_{bb} < m_H + 50 \text{ GeV}$
Z+jets	<i>ee</i> or $\mu\mu$ pair	<i>ee</i> or $\mu\mu$ pair
control region	$m_{bb} < 0.85 \cdot m_H - 20 \text{ GeV}$	$m_{bb} < 0.85 \cdot m_H - 25 \text{ GeV}$
	or $m_{bb} > m_H + 20 \text{ GeV}$	or $m_{bb} > m_H + 50 \text{ GeV}$
Тор	$e\mu$ pair	$e\mu$ pair
control region	$0.85 \cdot m_H - 20 \text{ GeV} < m_{bb} < m_H + 20 \text{ GeV}$	$0.85 \cdot m_H - 25 \text{ GeV} < m_{bb} < m_H + 50 \text{ GeV}$

ZZ+E^{miss} signature

Selection from arxiv.2107.00404

- Exactly four leptons
- |m_z-91.2| < 10 GeV
- p_T(l)>25GeV
- E_T^{miss} > 50 GeV
- m(4l) < 400 GeV

arxiv.2401.04742

Additional ATLAS 4I+MET search with 4I coming from H resonance

Benchmark scenarios

Study four benchmark points for different $\Delta m = m_A - m_{H\pm}$ and tan β

Black: Constraints from EW precision measurements and decay widths > 30%

Show four different benchmark points for different Δm=m_A-m_{H±} and sinθ

- Δρ violated: Constraints from electroweak precision observables
- BFBs hold: Scalar potential is bounded from below
- Γ_i/m_i<30%: Decay widths of scalars should remain small

Signatures with charged Higgs

 Allowing larger mass splitting between m_A and m_{H±} makes further new unexplored signal signatures kinematically possible such as A → H⁺W⁻

 $m_{H\pm}=m_{A}-120, m_{H}=100 \text{GeV}, m_{a}=600 \text{GeV}$ 1.0 0.8 H+→tb BR(H+) 0.6 — H+→HW 0.4H+→aW 0.2 0.0 180 185 190 195 200 $m_{H_{+}}$ [GeV]

Signatures with charged Higgs The A \rightarrow H⁺W⁻ decay

No previous A → H⁺W⁻ analysis

- Only a small region (bottom left corner) is sensitive for the H[±]→W[±]H decay
- Larger region where the H[±]→tb decay is important
- Both of them give a final state not previously explored

 $m_A = m_{H^{\pm}} + 120 \text{ GeV}, m_a = 300 \text{ GeV}$ 700600 500 m_H [GeV] $\blacksquare H^+ \rightarrow HW^+$ 400 $\blacksquare H^+ \rightarrow tb$ 300 Constraints 200 100 300 400 500 600 700 800 900 m_A [GeV]

bb+E^{Tmiss} signature Impact of Box Diagrams

Box diagrams become important for large mass difference between a and A (decay A $\rightarrow h_{\text{SM}}a(xdxd)$)