Review of benchmark models used for $Z' + E_T^{miss}$ searches

Even S. Haaland

University of Oslo

Roadmap of Dark Matter Models for Run 3 May 16, 2024

・ 何 ト ・ ヨ ト ・ ヨ ト

Z'+MET searches

Introduction

- Following the previous (inclusive) dilepton resonance search(es) in ATLAS we are now looking at *exclusive* $\ell\ell + X$ final states.
- In the analysis described here we are we are searching for dilepton resonances in events with $e^+e^-/\mu^+\mu^-$ and large E_T^{miss} .
- A CONF note [ATLAS-CONF-2023-045] was published for EPS in August 2023, using a set of Z' + E^{miss} benchmark models [arxiv.org:1504.01386].
- Search focused on the novelty of the final state and search strategy, and less emphasis on making "interesting interpretations" → using available models to optimise the search strategy and set limits.
- Key questions to follow up on:
 - How are the models constrained by other searches?
 - Can the models reproduce the observed dark-matter relic density?
 - Are there other (more interesting) models that can produce this final state?

イロト 不得 トイヨト イヨト 二日

Outline

- Overview of models and benchmarks/parameters.
- Summary of search strategy and results.
- Model constraints from other searches.
- Dark matter interpretation.

The dark-Higgs model

- New heavy scalar, h_D, with couplings to Z' and a dark scalar, χ (possible DM candidate).
- The Z' acts as the portal between the SM and the dark sector.
- Assume minimal mixing between h_D and SM Higgs.

The light-vector model

- Relatively light Z' with off-diagonal couplings to two dark fermion states, χ₁ (possible DM candidate) and χ₂.
- The Z' acts as the portal between the SM and the dark sector.
- Requires large mass splitting between χ₁ and χ₂.

The light-vector model w/ EFT coupling

Not considered in the CONF note!

- Similar to the light-vector model, but with the first Z' mediator replace by a contact interaction.
- Scale of the EFT coupling given by the parameter Λ.
- May evade dilepton/dijet search constraints if g_q is very small.

Masses: $m_{Z'}$, m_{χ_1} , m_{χ_2} Couplings: g_D , g_q , g_ℓ EFT scale: Λ

Parameters and benchmark scenarios

- **Couplings:** $g_D = 1$, $g_q = 0.1$, $g_\ell = 0.01$ (Inspired by V2 scenario from LHC DM WG recommendations.)
- Z' masses: 200-1000 GeV
- Dark sector benchmarks:

	Dark-Higgs	Light-vector
Light dark-sector	$m_{\chi}=5{ m GeV}\ m_{h_D}=125{ m GeV}$	$egin{aligned} m_{\chi_1} &= 5 ext{GeV} \ m_{\chi_2} &= m_{\chi_1} + m_{Z'} + 25 ext{GeV} \end{aligned}$
Heavy dark-sector	$m_{\chi} = 5 { m GeV} \ m_{h_D} = m_{Z'}$	$m_{\chi_1} = m_{Z'}/2 \ m_{\chi_2} = 2m_{Z'}$

Search strategy and results

• SR strategy:

- ▶ m_{ℓℓ} > 180 GeV
- Three bins in $E_T^{miss,sig}$
- *b*-jet veto
- No significant excess observed.

Exclusion limits

- **Example:** light-vector model w/ light dark-sector benchmark.
- Upper limits on the cross section and the Z'll coupling as a function of Z' mass.
- Lepton coupling limits calculated assuming that $\sigma \propto g_{\ell}^2$.

Constraints from dilepton searches

• The process $pp \to Z' \to \ell \ell$ is possible within the dark-Higgs and light-vector models.

- **Couplings:** $g_q = 0.1$, $g_\ell = 0.01$
- Excluded up to m_{Z'}~2 TeV by the inclusive dilepton search by ATLAS. [arXiv:1903.06248]

< 1 k

10/16

Constraints from dijet searches

• The process $pp \rightarrow Z' \rightarrow jj$ is possible within the dark-Higgs and light-vector models.

- Coupling: $g_q = 0.1$
- Excluded up to m_{Z'}~2.5 TeV by the ATLAS high-mass dijet search. [arXiv:1910.08447]

11 / 16

Reinterpretation of ATLAS dilepton inclusive search for $Z' + E_T^{miss}$ processes

- Have compared our limits with the limits obtained by reinterpreting the ATLAS inclusive dilepton search for the models we used,.
- See that our limits are about an order of magnitude stronger for the "Z' + E_T^{miss} specific" processes.
- Important for search reinterpretations in other (more interesting) models with similar final states.

12 / 16

Relic density predictions: dark-Higgs model

- Our benchmarks:
 - Light dark-sector: $m_{\chi} = 5$ GeV, $m_{h_D} = 125$ GeV
 - Heavy dark-sector: $m_{\chi} = 5$ GeV, $m_{h_D} = m_{Z'}$
- DM overproduced in our benchmarks, but ~correct RD can be reproduced by increasing the masses of the dark-sector particles.

13/16

Relic density predictions: light-vector model

- Our benchmarks:
 - Light dark-sector: $m_{\chi} = 5$ GeV, $m_{\chi_2} = m_{Z'} + 30$ GeV
 - Heavy dark-sector: $m_{\chi} = m_{Z'}/2$ GeV, $m_{\chi_2} = 2m_{Z'}$
- DM overproduced in our benchmarks, but ~correct RD can be reproduced by increasing the masses of the dark-sector particles.

Cross-sections of signals with realistic RD

- Observation: The models can be tuned to reproduce the observed relic density by increasing the masses of the dark-sector particles.
- **Consequence:** Dramatic decrease in cross-sections compared to the benchmarks we have considered so far.
- **Conclusion:** Versions of these models with realistic RD predictions seems to be way out of reach.

Green line: "lightest possible" dark-sector scenario that yields realistic RD predictions.

Summary & outlook

- Have performed a search for dilepton resonances in the $\ell\ell + E_T^{\text{miss}}$ final state using the full ATLAS Run II data, with focus on the novelty of the final state, and considered a set of dark-sector benchmark models for search optimisation and limit setting.
- The considered models are not ideal, since they are rather strongly constrained by other searches, and do not reproduce the observed DM relic density.

• Future plans/possibilities:

- Provide fiducial limits for the SRs in order to ease reinterpretations in better (more realistic) models. (Run 2 paper.)
- Consider the EFT model, which seems more promising since it can evade some dilepton/dijet search constraints. (Run 2 paper.)
- New search techniques and/or extended versions of the Run 2 search. (Future iterations.)
- Consider other models that can produce the targeted final state, if they exist! Input from theory community needed. (Future iterations.)

Ideas are warmly welcome!