Extended Higgs Sector in Singlet-Triplet Fermionic Model for Dark Matter and Neutrino Mass

Manimala Mitra

Institute of Physics (IOP), Bhubaneswar

15/05/2024

Roadmap for Dark Matter Models for Run 3, CERN

JHEP 11 (2022) 133, G. Belanger, S. Choubey, R. M. Godbole, S. Khan, M. Mitra, A. Roy 1

 Other production mechanisms, such as conversion driven freeze out, dark sector number changing processes

Testing DM and associated BSM descriptions in experiments??

DarkMatter Production

* Weakly interacting massive particle

* Feebly interacting massive particle

Singlet-Triplet Fermionic Model

Scalar Spectrum

Dark Matter

Dark Matter Production

BP = Bath Particle

- WIMP Dark Matter
- DM is in thermal bath
- Annihilation of bath particles, decay of H_2 and late decay of N play substantial role

- FIMP Dark Matter as $Y_{\rho\Delta} < \mathcal{O}(10^{-10})$
- N is non-thermal
- Freeze in production (decay, annihilation) +late decay of ρ contributes to relic density

 $M_{\rho} > 580 \ GeV$ from disappearing track searches [ATLAS collaboration, Eur. Phys. J. C 82 (2022) 606]

- H_2 is a thermal particle
- $H_2 \rightarrow \rho N$ produces N
- Late decay of $N \rightarrow \rho H_1$ for correct relic density
- **BBN constraint on lifetime of** *N*

Boltzmann equation for ρ and N

Dark Matter Production - Scenario II (*N* as **Dark Matter**)

 H_2 is lighter (within the reach of LHC) and $H_2 \rightarrow \rho N$ is kinematically foreboded

A. $2 \rightarrow 1, 1 \rightarrow 2$ dominated scenario

B. $2 \rightarrow 2$ dominated scenario

Dark Matter Production with lighter H_2

Substantial annihilation contribution

 $M_N < M_\rho, \quad M_{H_2} < M_\rho + M_N$

- Standard freeze-in and late decay $\rho \rightarrow NH_2$
- $AB \rightarrow \rho N$, $AB = W^{\pm}, Z, \rho^{\pm}, H_{1,2}, H^{\pm}$ large

JET+MET, Multi-lepton+MET, Multi-lepton+Multi-jet channels can be powerful probe

- Singlet-triplet fermonic model is a viable model for neutrino mass generation and dark matter
- With $Y_{\rho\Delta}\sim \mathcal{O}(10^{-10})$ late decay contribution plays a significant role In determining relic abundance
- If the channel $H_2 \rightarrow \rho N$ is closed, substantial fusion and annihilation contribution can be realised with a few hundred GeV BSM Higgs
- JET+MET, Multi-lepton+MET, Multi-lepton+Multi-jet channels can be powerful probe
- Big Bang Nucleosynthesis constraint due to late decay of ρ,N

Thank You

Dark Matter Production with lighter H_2

