

Dark Showers Experimental results in ATLAS

DILIA MARÍA PORTILLO

17-05-2024

ROADMAP OF DARK MATTER MODELS FOR RUN 3

CONTENT

Dark Shower Searches with ATLAS detector using Run 2 dataset

- Search for non-resonant production of semi-visible jets [Phys. Lett. B 848 (2024) 138324]
- Search for resonant production of dark quarks in the dijet final state [JHEP 02 (2024) 128]
- Search for dark mesons decaying to top and bottom quarks [ATLAS-CONF-2023-021]

DARK SECTOR

- Models with Dark Matter existing in a hidden sector, composed of particles not charged under Standard Model gauge groups
- Postulate a portal that communicates between SM and dark sectors, i.e. have dark sector state(s) that decay back to SM with small coupling.
- Phenomenologically attractive, as such models can address a lot of current gaps in the SM

 $SU(3)_c \times SU(2)_L \times U(1)_Y$

Standard Model

DARK SECTOR

- Models with Dark Matter existing in a hidden sector, composed of particles not charged under Standard Model gauge groups
- Postulate a portal that communicates between SM and dark sectors, i.e. have dark sector state(s) that decay back to SM with small coupling.
- Phenomenologically attractive, as such models can address a lot of current gaps in the SM

 $SU(3)_c \times SU(2)_L \times U(1)_Y \times SU(N)_{BSM} \times U(1)_D$

Dark sectors communicate with the SM through a mediator that is charged under both the SM and hidden sector (Dark photon, Dark Higgs, Axion, Sterile Neutrino)

Standard Model

STRONGLY-INTERACTING DARK SECTORS DARK QCD/SHOWERS

A very wide range of unusual-jet signatures to explore!

jets (or very soft radiation patterns)

Some dark hadrons can decay back to SM particles, other will remain invisible. Some dark hadrons may have a significant lifetime

DARK SHOWER SIGNATURES

Semi-visible Jets

Some dark hadrons may decay to SM particles, some others may remain invisible $\overline{E_{\rm T}^{\rm miss}}$ aligned with jet

Signal Model

Bi-fundamental scalar portal
 Focus on t-channel
 Parameters: m_{q_d} , m_{Φ} , λ , $r_{inv} \equiv \left\langle \frac{\# \text{ of stable hadrons}}{\# \text{ of hadrons}} \right\rangle$

Selection

 $^{\circ}$ >=2 jets, $E_{\rm T}^{\rm miss}$ >200 GeV, $\Delta \phi$ (closest jet, $E_{\rm T}^{\rm miss}$) < 2

• $E_{\rm T}^{\rm miss}$ trigger

• Signal Region: HT>600 GeV, MET>600 GeV, lepton veto

Discriminants

[©]max-min ϕ : Difference in the azimuthal angle between j_1 and j_2 (farthest-closest from $E_{
m T}^{
m miss}$)

Background

Dominant: V+jets, Top, multijets
 Control Regions for background estimation

 1L : to constrain W+jets & single Top
 1L1B: for Top
 2L : for Z+jets

Strategy

Simultaneous fit of the 9 bins for all regions
Yield in each bin used as an observable

Results

•Upper limits extracted on σ as function

mediator mass for different r_{inv}

Assuming a coupling strength of unity between the mediator, a SM quark and a dark quark, mediator masses up to 2.7 TeV can be excluded

Dilia Portillo

JHEP 02 (2024) 128

13

Look for a resonant excess in the di-jet invariant mass distribution above QCD background

Strategy

Results

•Exclusion depends on the model, but can reach 3-3.5 TeV for some models for which the usual $Z' \rightarrow q q$ search cannot say anything

Limits on $\sigma \times Br(Z' \to q_d \ \bar{q_d})$

DARK QCD SIGNATURES

Portal does not need to be a new exotic mediator

Dark pions could be produced by SM bosons or dark rho ($\eta = m\pi/m\rho < 0.5$)

Search for Dark Mesons

ATLAS-CONF-2023-021

- Two Stealth DM models <u>JHEP08(2019)020</u> with dark pions decaying promptly back to SM states (top and bottom dominating)
- Not a mediator search!

Resonant production via pD

Drell-Yan-type production

ATLAS-CONF-2023-021

Signal Model

- Strongly coupled dark sector interacting only with the EW part of the SM
- Free parameters of model: m_{π_D} and $\eta = m_{\pi D}/m_{
 ho D}$
- Focus on gaugephobic decays of dark pions into SM particles
- tttb and ttbb final states
 - Dark pions $\pi_{
 m D}$ reconstructed with Reclustered Large-R jets

Selection

- Signature: 8–10 jets with \geq 4 b-jets
- Triggers: $H_{\mathrm{T}} = \sum |p_{\mathrm{T}}^{\mathrm{jet}}|$
- Selection overview: ≥ 2 large-radius jets with masses >250 GeV & >300 GeV for $\pi_{\rm D}$, 2 b-jets with $\Delta R < 1 \& m_{\rm bb}/p_{\rm T,bb} > 0.25$

Strategy

Reconstruct each dark pion with large-R jet
 Require each to contain two b-jets
 Categorisation: 9 SRs defined in the plane spanned by the masses of the two large-R jets

ATLAS-CONF-2023-021

CONCLUSIONS AND OUTLOOK

- ATLAS has a wide ranging and successful collider search programme
 Now including non-WIMP searches, i.e. dark photons (<u>2306.07413</u>, <u>JHEP07(2023)133</u>), ALPS (<u>JHEP07(2023)234</u>), **strongly coupled dark sectors** in this talk
- More LHC Run-2 results still coming
- Run-3 dataset growing fast!
 350 fb-1 to be recorded
- Many new ideas, both experimental (new techniques, new signatures) and theoretical (new models, anomalies)

Sandbox Studio, Chicago with Corinne Mucha

BONUS SLIDES

Search for non-resonant production of semi-visible jets using Run 2 data in ATLAS

Search for non-resonant production of semi-visible jets using Run 2 data in ATLAS

SEMI-VISIBLE JETS RESULTS

Table 3: Post-fit yields from the background-only fit, including pre-fit contributions of different signal benchmark points. Dashes refer to components that are negligible or not applicable. The total uncertainties include statistical and systematic uncertainties.

	Process	SR	CR 1L	CR 1L1B	CR 2L
	Z+jets	8 490 ± 260	11.6 ± 1.4	2.2 ± 0.6	1120 ± 40
	W+jets	5820 ± 300	3190 ± 170	351 ± 41	-
	tī	920 ± 70	350 ± 29	304 ± 24	-
	Single top	533 ± 47	358 ± 29	290 ± 25	-
ctors	Multijet	850 ± 100	28 ± 11	7.7 ± 3.1	-
	Diboson	757 ± 10	187 ± 9	34.5 ± 2.8	-
$\frac{k^{\text{SF}}}{18 \pm 0.05}$	Total bkg.	17370 ± 280	4120 ± 100	990 ± 35	1120 ± 40
$.09 \pm 0.04$	Data	17 388	4136	999	1 124
$.64 \pm 0.04$	Signal:				
$.10 \pm 0.04$	$m_{\Phi} = 1$ TeV, $R_{\rm inv} = 0.6$	101000 ± 23000	-	-	-
	$m_{\Phi} = 1$ TeV, $R_{\rm inv} = 0.8$	160000 ± 40000	-	-	-
	$m_{\Phi} = 2$ TeV, $R_{\rm inv} = 0.4$	2800 ± 600	-	-	-
	$m_{\Phi} = 2$ TeV, $R_{\rm inv} = 0.6$	8900 ± 2000	-	-	-
	$m_{\Phi} = 3$ TeV, $R_{\rm inv} = 0.2$	59 ± 13	-	-	-
	$m_{\Phi} = 3$ TeV, $R_{\rm inv} = 0.4$	126 ± 29	-	-	-

Scale Factors

Process	k ^{SF}
Z+jets	1.18 ± 0.05
W+jets	1.09 ± 0.04
Top processes	0.64 ± 0.04
Multijet	1.10 ± 0.04

Phys. Lett. B 848 (2024) 138324

Dilia Portillo

DARK JETS SIGNAL MODELS

- •Z' mediator benchmarks <u>arXiv:1712.09279</u>
- 4 different benchmark models (A, B, C, D)
 Higher running coupling for dark sector models.
- Negligible invisible fraction (stable dark hadrons)

Main differences with respect to SM jets:

- Higher number of soft particles (and higher number of tracks)
- Wider jets, due to double hadronization

Generated Signals

- Signal masses generated using the Hidden Valley module of Pythia 8.235
- Considering an SU(3) symmetry
- Signal masses per model from mZ'=1.5 TeV to mZ'=3.5 TeV in bins of 250 GeV for low masses and then 500 GeV

Model	n _f	Λ_d (GeV)	$\widetilde{m}_{q'}$ (GeV)	m_{π_d} (GeV)	$m_{ ho_d}$ (GeV)	π_d decay mode
A	2	15	20	10	50	$\pi_d \to c\bar{c}$
В	6	2	2	2	4.67	$\pi_d \to s\bar{s}$
С	2	15	20	10	50	$\pi_d \rightarrow \gamma' \gamma'$ with $m_{\gamma'} = 4.0 \text{ GeV}$
D	6	2	2	2	4.67	$\pi_d \rightarrow \gamma' \gamma'$ with $m_{\gamma'} = 0.7 \text{ GeV}$

Selection / Model	Α	В	C	D
$m_{\rm JJ} > 1.3 { m TeV}$	92.9	94.8	80.9	91.8
Jet trigger	93.0	93.2	92.5	92.3
$m_{J_{1,2}} > 50 \text{ GeV}, p_{T,J_1} > 500 \text{ GeV}, p_{T,J_2} > 400 \text{ GeV}$	88.5	60.0	81.3	56.1
$ \eta_{J_{1,2}} < 2$	99.9	99.9	100	100
$m_{\rm J_{1,2}}$ < 600 GeV, $p_{\rm T,J_{1,2}}$ < 3000 GeV	99.8	99.7	99.9	99.8
Signal Region $(n_{\text{track},1}^{\epsilon} > 0 \text{ and } n_{\text{track},2}^{\epsilon} > 0)$	37.0	2.7	11.6	55.5

SIGNAL MODELS

 4 different benchmark models 							arXiv:1712.09279	
	N_d	n_f	Λ_d (GeV)	$\begin{array}{c} \tilde{m}_{q'} \\ (\mathrm{GeV}) \end{array}$	m_{π_d} (GeV)	$m_{ ho_d}$ (GeV)	π_d Decay Mode	ρ_d Decay Mode
A	3	2	15	20	10	50	$\pi_d \to c\bar{c}$	$\rho_d \to \pi_d \pi_d$
B	3	6	2	2	2	4.67	$\pi_d \to s\bar{s}$	$\rho_d \to \pi_d \pi_d$
C	3	2	15	20	10	50	$\pi_d \to \gamma' \gamma'$ with $m_{\gamma'} = 4.0 \text{ GeV}$	$ ho_d ightarrow \pi_d \pi_d$
D	3	6	2	2	2	4.67	$\pi_d \rightarrow \gamma' \gamma'$ with $m_{\gamma'} = 0.7 \text{ GeV}$	$ ho_d ightarrow \pi_d \pi_d$

- Model M_{Z_d} [GeV] Cross section [fb] Generator filter efficiency 1500 2.84×10^{-4} 0.771 1.15×10^{-4} 1750 0.835 2000 5.04×10^{-5} 0.876 2250 2.35×10^{-5} А 0.905 2500 1.15×10^{-5} 0.923 3000 3.04×10^{-6} 0.940 3500 8.85×10^{-7} 0.942 2.86×10^{-4} 1500 0.860 1.15×10^{-4} 1750 0.898 5.01×10^{-5} 2000 0.925 2.35×10^{-5} В 2250 0.938 2500 1.15×10^{-5} 0.950 3000 3.05×10^{-6} 0.959 3500 8.87×10^{-7} 0.954 2.83×10^{-4} 1500 0.651 1750 1.15×10^{-4} 0.750 2000 5.04×10^{-5} 0.810 С 2250 2.35×10^{-5} 0.821 2500 1.14×10^{-5} 0.879 3000 3.03×10^{-6} 0.911 3500 8.88×10^{-7} 0.921 2.84×10^{-4} 1500 0.801 1750 1.15×10^{-4} 0.856 2000 5.01×10^{-5} 0.890 D 2250 2.34×10^{-5} 0.914 2500 1.14×10^{-5} 0.931 3000 3.03×10^{-6} 0.945 3500 8.86×10^{-7} 0.945
 - Signal xs usually very low compared to BG → More of a topology generator rather than full-blown theory model

- nf: Dirac fermions that are fundamentals of SU(Nd) and singlets under SM —> dark quarks
- The dark sector confines at a scale Ad, which is the approximate mass of the majority of the dark hadrons
- πd: pseudo-Goldstone bosons, analogous to QCD pions—> dark pions.
- *m*πd <= Λd

Model C	Model D
$\gamma' \rightarrow u\bar{u}: 22\%$	
$\gamma' \rightarrow cc: 22\%$ $\gamma' \rightarrow e^+e^-: 17\%$	$\gamma' \rightarrow \pi^+\pi^-$: 70%
$\gamma' \rightarrow \mu^+ \mu^-$: 17%	$\gamma' \rightarrow e^+e^-$: 15%
$\gamma' \rightarrow \tau^+ \tau^-: 10\%$	$\gamma' \rightarrow \mu^+ \mu^-$: 15%
$\gamma' \rightarrow aa: 0\%$ $\gamma' \rightarrow s\bar{s}: 6\%$	

Define a new discriminating variable, $n_{\mathrm{track}}^{\epsilon}$

1. Define a target efficiency, ϵ , for a background jet to pass the requirement on n_{track}

 $^{\circ}$ ε = (Events that pass n_{track} cut) / (total # of events) = 1%

2. For the leading jet and for each bin in m_{JJ} in the background, the minimal value P_{J_1} for which $n_{track,1} > P_{J_1}$ leads to ϵ is determined

Sketchs from https://www.theses.fr/2022GRALY054

6. Define new variable $n_{\text{track}}^{\epsilon}$

 $n_{\text{track}}^{\epsilon}(m_{JJ}) = n_{\text{track}} - P(m_{JJ})$

THE SIGNAL REGION

36

2) SYSTEMATIC UNCERTAINTIES

Background shape uncertainties

Uncertainty on the data CR/SR shape agreement:

Percentiles are derived from MC -> the decorrelation may not be perfect in data
 Evaluate this effect in MC:

Apply the percentiles to each systematic variation

In order to assess the shape agreement between the CR and the SR for each systematic, compute the double ratio:

 $\frac{(\frac{SR(nominal)}{CR(nominal)})}{(\frac{SR(systematic)}{CR(systematic)})}$

The background template is divided by the estimation of the double ratios

2) SYSTEMATIC UNCERTAINTIES

The shape of the background is taken from the CR + fit for the free normalisation in the SR
 Only the uncertainties affecting the SR/CR shape agreement are considered for the background

•Exp. uncertainties related to

jets (including an additional 5% JES non-closure for our signal jets for some models)
 tracking (negligible)

luminosity (signal only)

•modelling uncertainties (PDF, scales, parton shower)

•spurious signal estimated in the VR

	Model			
Uncertainty	А	В	С	D
$\mu_{R,FSR}$	7.3	19.0	34.1	9.9
Jet calibration non-closure	—	25.6	27.3	13.8
Spurious signal	10.7	14.7	3.7	10.3
PDF	4.9	5.5	4.8	4.8

DATA IN THE SIGNAL REGION

•Observed data in the signal region is compared with data in the control region (normalized).

• The BumpHunter algorithm looks for a deviation in the distributions.

No significant excess was observed with respect to the background prediction.

EXCLUSION LIMITS

•Compared to a MG implementation of xsec for $qq \rightarrow Z' \rightarrow q_d q_d$ (with $g_q = 0.05$ evading the 'usual' di-jet constraints)

•Exclusion depends on the model, but can reach 3-3.5 TeV for some models for which the usual $Z' \rightarrow q \ q$ search cannot say anything

Selection criteria for the SR ("Tag selection")

	Tag	Variable	Tag selection	Anti-tag selection	
Both large- R jets		$m_{bb}/p_{{ m T},bb}$	>	0.25	
Leading large- R jet	bb_1	$\Delta R(j, b_2) < 1.0$		≥ 1.0	
Sub-leading large- R jet	bb_2	$\Delta R\left(j,b_2\right)$	< 1.0	≥ 1.0	
Leading large- R jet	$\pi_{D,1}$	$m_{\rm jet,R=1.2}$	$\begin{array}{l} [300-325GeV,\\ 325-400GeV,\\ >400GeV] \end{array}$	$\leq 300GeV$	
Sub-leading large- R jet	$\pi_{D,2}$	$m_{ m jet,R=1.2}$	$\begin{array}{l} [250-300GeV,\\ 300-350GeV,\\ > 350GeV] \end{array}$	$\leq 250GeV$	

Multijet estimation

47