

CMS Experimental Results on Dark Showers

Long Wang (UMD) on behalf of the CMS experiment May 17, 2024

@Roadmap of Dark Matter models for Run3

L. W. (UMD)

Outline

- Introduction
- □ Semi-visible Jets (SVJ)
- Emerging Jets (EJ)
- □ Soft unclustered energy patterns (SUEP)
- □ Summary

Dark QCD/Dark Shower

- Motivations:
 - So far, WIMP DM searches have excluded large phase spaces at the LHC;
 - Dark QCD models can easily explain the coincidence between energy density of DM and baryons;
- If producible at the colliders, mediator particles connects Dark Sector and SM;
 - bifundamental scalar mediator X, vector mediator Z', ect.
- Dark quarks undergo showering under SU(N_D), where the stable dark hadrons contribute to DM candidates, unstable ones can decay back into SM, leaving exotic signatures on detector.

Dark QCD/Dark Shower

- Search scenarios on the CMS experiments can be generally categorized based on SU(N_D) structure :
 - *1.* $m_{qD} \leq \Lambda_D \ll \sqrt{s}$, shower enabled:
 - a. small 't Hooft coupling λ , like the SM QCD, showers with emerging/semivisible jets ;
 - b. large λ , non-QCD like, soft unclustered energy patterns;

- *2.* $\Lambda_D \sim \sqrt{s}$: higher confinement leads to heavier bound states, resonance-like searches for dark bound states;
- *3.* $\Lambda_D \ll m_{qD} \lesssim \sqrt{s}$: heavy quirks;
- Current CMS searches presented public results for scenarios 1.a and 1.b.
 - Semi-visible Jets (SVJ)
 - Emerging Jets (EJ)
 - Soft unclustered energy patterns (SUEP)
 Long Wang (UMD)

SVJ-search models JHEP 06 (2022) 156

- s-channel dark quark pair produced via leptophobic vector Z' mediator from broken U(1) symmetry;
- $SU(N_D)$ with $N_f^{dark} = 2$, $N_D = 2$;
- Dark guarks shower and hadronize, unstable dark hadrons decay back to SM promptly, stable ones characterized by invisible fraction r_{inv};
- Model parameters have:
 - $m_{\tau'}$: mediator mass; Ο
 - m_{dark}: dark hadron mass; Ο
 - r_{inv}: stable hadrons fraction;
 - α_{dark} : running coupling of dark QCD.

L. W. (UMD)

SVJ-search methodology

- Signal signatures on detector:
 - Two high-p_T and wide jets that contain mix of visible and invisible particles;
 - MET aligned with jets due to invisible contents in jets;
- Bump hunt of Z' resonant in m_T(JJ, MET);
- Background estimated with analytic fit to observed m_T distribution from data;

Dual strategy:

- Inclusive search:
 - Use only event-level kinematic variables;
 - Provides reinterpretability for other models with similar signature;
- BDT-based search:
 - Employ machine learning for optimized SVJ tagger;
 - maximizes sensitivity for the chosen signal models;

SVJ-search results, inclusive

Observed (expected) exclusions:

- 1.5 < m_{z'} < 4.0 TeV (1.5 < m_{z'} < 4.3 TeV)
- Depending on mZ':
 - \circ 0.07 < r_{inv} < 0.53 (0.06 < r_{inv} < 0.57)
- Lower bound on m_{z'} due to search using two resolved jets, boosted SVJ search probing lower m_{z'} close to publication.

SVJ-search results, BDT-based

Observed (expected) exclusions:

- $1.5 < m_{Z'} < 5.01 \text{ TeV} (1.5 < m_{Z'} < 5.1 \text{ TeV})$
- Depending on mZ':
 - \circ 0.01 < r_{inv} < 0.77 (0.01 < r_{inv} < 0.78)
- Wider exclusion comparing to inclusive approach.

EJ-search models

- Pair-produced bifundamental scalar mediator
 X_{dark} connects to SM quark and dark quark;
- $SU(N_D)$ with $N_D=3$, $N_f=3$;
- Two different signal model scenarios:
 - Unflavored model, where 3 generations of dark quarks are fully degenerate and couples unitarily to the SM d quark;
 - Flavor-aligned model, where 3 generations of dark quarks are flavor non-degenerate and couples differently to the SM down type quark;
- Setting typical dark QCD configurations analogous to SM QCD, e.g. dark pion decay constant ~ dark pion mass, confinement scale ~ dark quark mass, free model parameters are left with X_{dark} mass, and dark pions' mass and lifetime.

Emerging Jet

 Q_{dark}

 $X_{dark}(m_{X_{dark}})$

SM Jeť

EJ-search methodology

- Signal signatures on detector:
 - Semi-long-lived dark mesons decay back to SM particles, forming SM showers emerging from vertices finite distances away from collision points;
 - Tree level two SM jets + 2 emerging jets;
- Cut & Count analysis
- Background estimated using control samples in data based on jet misidentification probabilities.

Two approaches:

X_{dark}

 \bar{Q}'_{dark}

EMJ

SM Jet

- Model-agnostic approach for reinterpretability;
- ML-based approach to maximize sensitivity for the chosen models under search.

EJ-search results for $m_{\pi D}$ =10 GeV

- Top: unflavored;
- Bottom: flavor-aligned;
- Left: model-agnostic;
- Right: ML-based;
- Left side of the contours are excluded by the search;
- Large improvement in the unflavored search comparing to previous publication;
- Better sensitivity in low dark pion lifetime regions with ML-based search;
- Search also provides tabulated observed event yields in the paper.

EJ-search results for $m_{\pi D}$ =20 GeV

- Top: unflavored;
- Bottom: flavor-aligned;
- Left: model-agnostic;
- Right: ML-based;
- Left side of the contours are excluded by the search;
- Large improvement in the unflavored search comparing to previous publication;
- Better sensitivity in low dark pion lifetime regions with ML-based search;
- Search also provides tabulated observed event yields in the paper.

12

EJ-search results for $m_{\pi D}$ =6 GeV

Left: model-agnostic search; Right: ML-based search;

- Only relevant for flavor-aligned model scenario as the decay of dark pions starts to behave differently due to kinematics accessibility;
- Wider exclusion in ML-based approach comparing to model-agnostic approach.

SUEP-search models arXiv:2403.05311 submitted to PRL

- Production mode: Heavy scalar mediator S produced via gluon fusion and decays to a dark quark-antiquark pair;
- Quasi-conformal dark QCD sector with large 't Hooft coupling $\lambda >> 1$ above Λ_D ;
- Dark quarks form an **isotropic spray** of dark pseudoscalar mesons ϕ ;
- Dark mesons decay to pairs of dark photons A', that kinetically mixes with the SM hypercharge gauge field and decays promptly to SM particles;
- Model parameters of choices are: m_S , m_{ϕ} , $m_{A'}$ and T as temperature in LO Boltzmannian thermal model that governs the dark mesons decay.

SUEP-search methodology

- Signal signatures on detector:
 - Large multiplicities of isotropic, low p_T tracks final state;
 - Spherically-symmetric event shape;
- Cut & Count with track multiplicity and event sphericity;
- Background estimated using control samples in data, based on an extended ABCD method;

L. W. (UMD)

SUEP-search results

- No significant excess of events over the SM prediction;
- 1-D upper limits on production cross section from toy frequentist approach ;
- Best sensitivity for low-medium T, m_{\phi}, and medium-high m_s, as all increase the number of constituents, and push the signal in the last bins of SR;
- Similar sensitivity to different A' decay modes as shown in the colored observed lines.

SUEP-search results

- Exclusion limits for various scalar masses in the plane of m_φ vs T for A'->π⁺π⁻ with B=100%, regions below the observed limits are excluded;
- Available for SUEP-like cases with $m_s/T \sim m_s/m_{\phi} \sim 100$ where the final state has sufficient track multiplicity to populate the last bins of the SR.

Summary

CMS has presented searches for $SU(N_D)$ gauge structured Dark Sectors focusing on scenarios $m_{qD} \lesssim \Lambda_D \ll \sqrt{s}$.

- Small 't Hooft coupling cases:
 - SVJ: Dark hadrons stable or decay promptly, vector mediator excluded within range of 1.5-5 TeV ;
 - EJ: Dark hadrons have short lifetimes, scalar mediator excluded up to 1.9 TeV;
- Large 't Hooft coupling cases:
 - SUEP: Dark hadrons decay promptly without collimated jets signatures, first search at the LHC.

19

Backups - Undergoing DS searches

Boosted SVJ; t-channel SVJ; SVJ with leptons.

Backups - EJ tabulated result

the ask 1	56					
u-set 1	20	+	9 5	± 2	20	67
u-set 2	20.0	+	4.3 2.5	\pm	7.0	21
u-set 3	22.9	+	7.3 2.1	\pm	4.9	24
u-set 4	7.9	$^+$	2.0 1.6	\pm	2.2	10
u-set 5	11.3	+	2.7 1.9	\pm	2.0	13
a-set 1	8.8	+	$\begin{array}{c} 2.4 \\ 1.0 \end{array}$	\pm	2.0	16
a-set 2	1.67	7 + _	0.49 0.23	\pm	0.38	3
a-set 3	1.97	7 + _	$\begin{array}{c} 0.47 \\ 0.22 \end{array}$	\pm	0.37	2
a-set 4	2.30) +	0.81 0.30	\pm	0.39	3
a-set 5	10.2	+ -	$\begin{array}{c} 2.3 \\ 1.1 \end{array}$	\pm	3.4	16
uGNN set 1	15.6	+	$\begin{array}{c} 5.4 \\ 1.9 \end{array}$	\pm	3.8	18
uGNN set 2	0.73	+	$\begin{array}{c} 0.44 \\ 0.16 \end{array}$	\pm	0.27	0
uGNN set 3	7.6	$^+$	3.5 1.3	\pm	2.3	9
aGNN set 1	45	+	$\overset{18}{8}$	± 1	16	59
aGNN set 2	0.30) +	0.23 0.07	\pm	0.18	1
aGNN set 3	3.8 L	+ 	2.2 0.7 (UMD))	2.0	5