## SIFT-ing for Dark Shower Signals



### William Shepherd

In collaboration with James Floyd, Jonathan Mellenthin, Camryn Sanders and Joel Walker

| Lifetime | Emerging<br>Jets | Stopped<br>Particle<br>Search |  |
|----------|------------------|-------------------------------|--|
|          | Resembles<br>QCD | Heavy<br>Dijet<br>Resonance   |  |
|          | Mass             |                               |  |









 Large mass with long lifetime means very small couplings
 Negligible particle production at LHC



### What we want to focus on

Resembles QCD -

- This explains the absence of any searches in this area so far.
- Our goal is to discern just how closely it resembles
  QCD and distinguish it

Combinatoric background –

 Due to the large number of possible pairings, reconstructing the physical dark pion mass is very challenging

### ATLAS Search for Dark Jets

- Search for Z-prime production with decays into 'dark quarks' at ATLAS
- Selects signal events by anomalously large number of tracks in jets at a given P<sub>T</sub>
- Aims to reconstruct Z' mass, but not to see the dark pions directly



### $\pi_d$ Reconstruction Techniques



### SIFT: Scale-Invariant Filtered Tree



 $\delta_{AB} \equiv \frac{\Delta M_{AB}^2}{E_{TA}^2 + E_{TB}^2}$ 

A radius-free jet clustering algorithm
 Mutually hard prongs cluster last
 Tags substructure while clustering
 Well-defined combinatoric slice
 One method for low & high boost



#### arXiv:2302.08609

### Plateau Investigation Of New Scales: PIONS

- Cartoon of a log plot of jet algorithm merger masses, sorted by mass
- □ Yellow line shows a typical QCD showering
- Green shows a Dark QCD event
- □ **Red** upright lines are separated by the hypothetical plateau length *N* 
  - This length is a parameter defining the variable
- □ Slope of the **Blue** line is the variable we want to search in
  - We calculate the rms of discretized derivatives between mergers to yield the variable  $\Pi_N$



Sorted merger number

### **Exploring Merger Masses in Simulation**



This is the sorted merger mass plot averaged over a large number of events.

Note flattening in blue curve relative to red

### **PIONS** distribution



□ A flat plateau of length N in the merger mass plot gives low values of  $\Pi_N$ 



### BDT Results $M_{\pi} = 10$ GeV – Our Variables

- Merger masses, SIFT measures, and Π<sub>N</sub> variables all contribute to QCD vs Dark QCD discrimination power
- Both late and early merger variables are important to the analysis
- AUROC score of 83% using only these SIFTy variables



Feature Importance to Total Gain in Training Fold 1 Background vs. Signal



### BDT Results $M_{\pi} = 10$ GeV – All Variables

- A kitchen-sink analysis utilizes dijet masses, monojet masses, particle counts, and SIFTy variables
- Uses information very similar to ATLAS analysis, improved by addition of the two other approaches
- □ AUROC score of 89%



Feature Importance to Total Gain in Training Fold 1 Background vs. Signal



### **Classifier scores**

| $M_{\pi}$ | Strassler<br>All | SIFT<br>All | Classic<br>QCD | Kitchen<br>Sink |
|-----------|------------------|-------------|----------------|-----------------|
| 10        | 79               | 83          | 77             | 89              |
| 25        | 89               | 94          | 87             | 96              |
| 50        | 95               | 98          | 91             | 99              |
| 120       | 98               | 99          | 93             | 100             |
| 200       | 99               | 99          | 92             | 100             |
| 500       | 96               | 99          | 73             | 99              |

- SIFTy technique alone is outcompeting dijet resonance techniques of Strassler and broadlyclassified QCD variables alone
- Putting it all together, we have strong classification power throughout the explored parameter space
  - Makes explicit the complementarity of these approaches

### Conclusion



- □ We can achieve this level of discrimination between QCD showers and new dark QCD showers with prompt decays
- We can do that in this regime, where it seems other techniques do not work as well
  - Information from these techniques is complimentary
- □ This is a valuable expansion of the reach of the LHC into the Dark QCD parameter space



# Explore using this as a potential discovery tool rather than a discrimination tool

□ Broaden our parameter space away from the fixed Z' mass

Cross train machine learning against each individual mass

# Thank You

