

Searches for Dark Higgs Bosons at ATLAS

Max Planck Institute for Physics (Werner Heisenberg Institute)

On behalf of the ATLAS collaboration Roadmap of Dark Matter models for Run3, May 13-17, 2024

MAX-PLANCK-INS FUR PHYSIK

Changqiao Li

Two-Mediator DM (2MDM) model

- Simplified model for DM production at the LHC, extends spin-1 mediator models of LHC DM WG
 - Majorana DM (X) interacts with two different mediators:
 - Massive vector boson Z' and a dark Higgs s, is responsible for generating both DM and Z' mass

$$\mathcal{L}_{\chi} = -g_q Z^{\prime \mu} \bar{q} \gamma_{\mu} q$$

$$\mathcal{L}_{\chi} = -\frac{1}{2} g_{\chi} Z^{\prime \mu} \bar{\chi} \gamma^5 \gamma_{\mu} \chi - \frac{g_{\chi}}{m_{Z^{\prime}}} s \bar{\chi} \chi + 2 g_{\chi} Z^{\prime \mu} Z^{\prime \mu}_{\mu} \zeta^{\prime \mu} \chi$$

Parameters and their recommended value from LHC DM WG

Particle Masses		Couling Constants	
Majorana DM mass	m _x = 200 GeV	Dark-sector coupling	g _X = 1.0
Z' mass	mz'	Quark-Z' coupling	g _q = 0.25
Dark Higgs mass	ms	Mixing angle with SM Higgs	θ = 0.01

 $\left(g_{\chi}\,s^2+m_{Z'}s\right)$

Non-Zero $\theta \rightarrow$ unstable s and decays into SM states

Various final states Targeted

m_s > 150 GeV

Dark Higgs s(VV) hadronic analysis, denoted as monoSVV had.

- Final states: E_T^{miss} + VV(qqqq)
- Phys. Rev. Lett. 126 (2021) 121802

Dark Higgs s(WW) semileptonic analysis, denoted as monoSWW semilep.

- Final states: E_T^{miss} + WW(lvqq)
- Higher cross section than fully-leptonic
- Cleaner signature than fully-hadronic
- JHEP 07 (2023) 116

Dark Higgs s(bb) analysis, denoted *monoSbb*

- Final states: E_T^{miss} + bb
- Dominates in low m_S
- ATLAS-CONF-2024-004

Reconstruction of the s decay

$m_s > 150 \text{ GeV}$

In all three analyses, Merged SR dominates sensitivity

Reconstruction techniques used in Merged / Intermediate reg		
monoSbb	<i>Reclustered large-R</i> jets (allows for exploring the low m _s)+ <i>Xbb</i> tagge	
monoSVV had. / monoSWW semilep.	Reclustered + track assisted large-R + the cuts on the substructure varia	

itivity ions or er ijets ibles

Reclustering and Track Assisted large-R jets

Track Assisted Reclustering

monoSVV had. Analysis

E^{Tmiss} bins

- N(small-R jets) ≥ 2 , dedicated # of lepton for each channel, E_T^{miss} (or E_T^{miss} proxy) > 200 GeV
- anti-QCD cuts, tau veto, b-tag veto

Overview

1μ	2 lepton
W+jets control region	Z+jets control region
$E_T^{miss} proxy = (E^{miss} + p^{\mu})_T bins$	E ^{Tmiss} proxy = pT(II) bins

• E_T^{miss} triggers used in 0 lepton and 1 μ channel, combination of single lepton triggers in 2 lepton channel

Reconstructed m_{vv} in CR

GeV

20

Events /

ata/SM

 \square

8

Reconstructed m_{vv} in SR

Events / 20 GeV

Data/SM

Dominant Sources of Uncertainty

Source of uncertainty	Uncertainty [%]		
Source of uncertainty	(a)	(b)	(c)
Signal modeling	11	10	10
W+jets modeling	9	21	14
Z+jets modeling	7	12	13
MC statistics	11	14	23
Jet energy scale	8	17	24
Jet energy resolution	11	18	15
Lepton reconstruction	8	9	5
Track reconstruction	6	7	5
Systematic uncertainty	30	42	55
Statistical uncertainty	16	25	50
Total uncertainty	34	49	74

3 selected signals

	m _{Z'} [TeV]	m _s [GeV]
а	1	160
b	1	235
С	1	310

Strongest impact on theory predicted signal strength from:

- W/Z+jets modelling
- Jet systematics
- signal modelling

systematics dominated

Limit Contours in m_{Z'}-m_s-plane

• TAR jet can improve the sensitivity up to 2.5 compared to conventional large-R jet

monoSWW semilep. Analysis

- passed E_T^{miss} trigger or single muon trigger, N(lep) = 1, high E_T^{miss} and high m_T (lep, E_T^{miss})
- E^{miss} significance cuts, window cut on m_{Wcand}.

Overview

• Recycling strategy: Only consider events for the resolved category if they fail the merged criteria

Analytical solution of $s \rightarrow WW \rightarrow qqlv$ system

- 3 invisible (neutrino + 2 DM) particle in the decay products \rightarrow direct dark-Higgs reconstruction impossible
- Used a rotated frame of reference with lepton along Z-axis and W_{had} in X-Z plane.
- Find minimum m_s (m_s^{min}) consistent with W_{had} and lepton momenta and m_W constraint. details in backup

fit on m_s^{min} shape in the SRs + yield in CRs simultaneously

Dominant Sources of Uncertainty

Course of uncertainty	Uncertainty [%]		
Source of uncertainty	(2100, 210)	(1000, 140)	(1000, 3
W+jets modelling	4	5	2
Diboson modelling	5	4	1
<i>tt</i> modelling	7	4	1
Single top modelling	9	5	11
Signal modelling	1	3	0
Statistical uncertainty of MC	26	15	29
R = 0.4 jet energy scale	11	12	14
R = 0.4 jet energy resolution	9	4	7
R = 0.2 jet energy scale	9	9	14
R = 0.2 jet energy resolution	13	10	16
$E_{\rm T}^{\rm miss}$	7	1	7
Track reconstruction	5	2	2
Lepton reconstruction	2	3	1
Systematic uncertainty	38	28	40
Statistical uncertainty of data	38	32	37
Total uncertainty	53	43	55

60) (m_Z, m_s)

Strongest impact on fitted signal strength from:

- MC statistics (mainly W+jets)
- Jet uncertainties

systematic uncertainty (incl. MC statistics) is comparable to statistical uncertainty

Limit Contours in mz'-ms-plane

monoSbb Analysis

- anti-QCD cuts, tau veto, b-tag veto outside RC jet

Overview

E_Tmiss triggers used in 0 lepton and 1 µ channel, combination of single lepton triggers in 2 lepton channel dedicated # of lepton for each channel, E^{miss} and Sbb recoil, boosted decay with 2m/pT < 0.6 for RC jet

Reconstruction of the $s \rightarrow bb$

fit on m_J or m_{bb} shape in the SRs + yield in CRs simultaneously

resolved

Limit Contours in m_{Z'}-m_s-plane

• Xbb tagger can improve the limit results by up to 30%

Dominant systematic uncertainties from:

- large-R jet b-tagging (Xbb tagger) calibration
- modeling of Z+jets

Data statistical uncertainties dominated.

3500 4000 m_{7'} [GeV]

Summary on Limit Contours

m_s > 150 GeV

Dark Higgs model JHEP 1704 (2017) 143 Scenario 1 $g_q = 0.25, g_\chi = 1$ $\sin\theta = 0.01, m_{\chi} = 200 \text{ GeV}$ $-- E_{T}^{miss} + VV(q\overline{q}q\overline{q})$ PRL 126 (2021) 121802 $E_{T}^{miss} + WW(q\overline{q}\ell\nu)$ JHEP 07 (2023) 116 $E_T^{miss} + b\overline{b}$ Thermal Relic Density

Thanks to the cleaner signature in

monoSWW semilep. has a stronger

exclusion power than monoSVV had

$$m_s \le 150 \text{ GeV}$$

monoSbb has a strongest exclusion power at high m_{Z'}

Constraint from observed DM relic abundance

- Up to now fixing $g_q = 0.25$ and $g_X = 1.0$, this has important drawbacks when
 - 1. The couplings combination adopted so far is excluded by di-jet resonances for a wide range of Z' masses
 - 2. The observed DM relic abundance only reproduced for certain combination of the masses of the particles in the dark sector

- $XX \rightarrow Z' \rightarrow qq$
 - when $m_X \approx m_{Z'}/2$, resonantly enhanced, dominant, small g_X is sufficient to reproduce relic abundance
- $XX \rightarrow ss \rightarrow SM$
 - becomes leading when far from $m_X \approx m_{Z'}/2$
- Larger Z'-DM coupling also implies a larger partial decay width for Z' \rightarrow XX, di-jet signal rates suppressed

values of g_X determined by the relic abundance

When constraint from the observed DM relic abundance considered (fixing g_q), possible DM annihilation processes:

Two new scenarios proposed

	Parameters	ms
1	ms - mz'	30 < m _s < 150 GeV
2	ms - mz'	30 < ms < 150 GeV
3	m _× - m _{Z'}	ms = 70 GeV

- In addition to the LHCDM WG recommendation, monoSbb analysis proposes:
 - Scenario2: $gX = 1 \rightarrow value$ determined by relic density abundance, m_x increased to 900 GeV
 - Scenario3: $gX = 1 \rightarrow value$ determined by relic density abundance, $m_s = 70$ GeV for the largest sensitivity on m_x - m_{Z'} - plane, also proposed in paper <u>JHEP 04 (2017) 143</u>

Fixed values of the rest parameters

 $\sin\theta = 0.01, m_x = 200 \text{ GeV}, g_q = 0.25, g_x = 1.0$

 $\sin\theta = 0.01, m_x = 900 \text{ GeV}, g_q = 0.25,$

g_x determined by relic density

 $sin\theta = 0.01, g_q = 0.25, g_x$ determined by relic density

Looking forward to further discussions

Limit Contours from monoSbb

 $sin\theta = 0.01$, $m_x = 900$ GeV, $g_q = 0.25$, g_x determined by relic density

 $m_s = 70 \text{ GeV}, \sin\theta = 0.01, g_q = 0.25,$ g_x determined by relic density

- Targeting 2MDM models, three analyses introduced
 - obtained
- Towards Run3, we will / may have:
 - large data statistics (a big benefit to monoSbb)
 - better background modeling (W/Z+jets)
 - new large-R jet reconstruction
 - simplified the signal reconstruction (benefit to monoSVV)
 - with new Xbb tagger (GN2x) (benefit to monoSbb)
 - other final states:
 - combination across two experiments

Summary and Outlook for Run3

Thanks to the novel techniques, the sensitivities are enhanced and strong constraining power

with new dedicated tagger for W/Z in the dense environment to replace the TAR jet to

• $s \rightarrow WW \rightarrow IvIv$, already done by CMS, see the next talk from <u>Alicia Calderon Tazon</u> • $s \rightarrow ZZ \rightarrow 4$ lep, clean signature though low branching ratio, maybe not practical yet

Backup

Feynman Diagram for monoSWW Production

Typically dominates for high m_{Z'}

Sizable contribution throughout the parameter space considered Contribution most for $m_{Z'} < 2m_{\chi} + m_{S}$

Reconstruction of TAR jets

S to VV in Hadronic scalar boson candidate mass: invariant mass of R=0.8 TAR jet with highest pt

Track-Assisted Reclustered jet:

jet re-clustering algorithm using AntiKt4EMTopoJets with substructure information computed from tracks matched to the constituent jets

Track quality selection	Loose
Track $p_{\rm T}$	> 0.5 GeV
Track $ \eta $	< 2.5
Track Si hits	7 or more
Track to vertex association: $z_0 \times \sin(\theta)$	< 3.0 mm
Track to vertex association: transverse distance d_0	< 2.0 mm
Input jet selection	signal $R = 0.4$ jets
Input jet $p_{\rm T}$	$p_{\rm T}^{\rm jet} > 20 {\rm GeV}$
Reclustering radius	R = 0.8
TAR jet $p_{\rm T}$	$p_{\rm T}^{\rm TAR} > 100 {\rm GeV}$
Trimming radius	R = 0.2
Trimming $p_{\rm T}$ fraction	0.05
Track to jet association	ΔR (jet, track) < 0.5

s to WW in Leptonic

- track-assisted reclustering, using tracks and calibrated R=0.2 LCW (R-scan) jets as input
- lepton disentanglement: remove tracks associated with electrons/mouns, and R=0.2 jets within ΔR<0.2 of an electron from input
- jets are reclustered with R=1 AntiKt
- tracks are associated to R=0.2 jets and rescaled to jet p_T
- mass and substructure of TAR jets are calculated from tracks, making use of superior tracking resolution

Track selection	Loose quality $p_{\rm T} > 0.5 \text{ GeV}$ n < 2.5
Track-to-vertex association	$\begin{vmatrix} z_0 \times \sin \theta \end{vmatrix} < 3.0 \mathrm{mm}$ $\begin{vmatrix} d_0 \end{vmatrix} < 2.0 \mathrm{mm}$
Tracks removed if associated to	electrons, muons
Input jet selection	R = 0.2 topo jets $p_{\rm T} > 20 \text{ GeV}$ $ \eta < 2.5$
Reclustering radius	R = 1.0
TAR jet $p_{\rm T}$	$p_{\rm T}^{\rm TAR} > 100 {\rm GeV}$
Trimming radius	R = 0.2
Trimming $p_{\rm T}$ fraction	$f_{\rm cut} = 0.05$
Track-to-jet association	ΔR (jet, track) < 0.3
jet-electron overlap removal	ΔR (jet, electron) < 0.2

Jet substructure / shape variables

Energy Correlation ratios, C2 and D2

$$\begin{aligned} \text{ECF1} &= \sum_{i \in J} p_{\text{T}_i}, \\ \text{ECF2}(\beta^{\text{ECF}}) &= \sum_{i < j \in J} p_{\text{T}_i} p_{\text{T}_j} \left(\Delta R_{ij} \right)^{\beta^{\text{ECF}}}, \\ \text{ECF3}(\beta^{\text{ECF}}) &= \sum_{i < j < k \in J} p_{\text{T}_i} p_{\text{T}_j} p_{\text{T}_k} \left(\Delta R_{ij} \Delta R_{ik} \Delta R_{jk} \right)^{\beta^{\text{ECF}}} \end{aligned}$$

$$\begin{aligned} \tau_0(\beta^{\mathrm{NS}}) &= \sum_{i \in J} p_{\mathrm{T}_i} R_0^{\beta^{\mathrm{NS}}}, \\ \tau_1(\beta^{\mathrm{NS}}) &= \frac{1}{\tau_0(\beta^{\mathrm{NS}})} \sum_{i \in J} p_{\mathrm{T}_i} \Delta R_{a_1,i}^{\beta^{\mathrm{NS}}}, \end{aligned}$$

 $C_2 = \frac{e_3}{(e_2)^2},$ $e_2 = \frac{\text{ECF2}}{(\text{ECF1})^2},$ $e_3 = \frac{\text{ECF3}}{(\text{ECF1})^3}$. $D_2 = \frac{e_3}{(e_2)^3}$.

• N-subjettiness ratios $\tau_{21} = \frac{\tau_2}{\tau_1}$ and $\tau_{32} = \frac{\tau_3}{\tau_2}$ (used to distinguish W and top jets)

$$\tau_{2}(\beta^{\mathrm{NS}}) = \frac{1}{\tau_{0}(\beta^{\mathrm{NS}})} \sum_{i \in J} p_{\mathrm{T}_{i}} \min(\Delta R_{a_{1},i}^{\beta^{\mathrm{NS}}}, \Delta R_{a_{2},i}^{\beta^{\mathrm{NS}}}),$$

$$\tau_{3}(\beta^{\mathrm{NS}}) = \frac{1}{\tau_{0}(\beta^{\mathrm{NS}})} \sum_{i \in J} p_{\mathrm{T}_{i}} \min(\Delta R_{a_{1},i}^{\beta^{\mathrm{NS}}}, \Delta R_{a_{2},i}^{\beta^{\mathrm{NS}}} \Delta R_{a_{3},i}^{\beta^{\mathrm{NS}}}),$$

Analytical solution of

$$\begin{split} E_{\nu} &= \frac{m_W^2}{2E_{\ell}(1 - \cos \theta_{\ell \nu})} \\ p_{\nu} &= \frac{m_W^2}{2E_{\ell}(1 - \cos \theta_{\ell \nu})} (\sin \theta_{\ell \nu} \cos \phi_{\nu}, \sin \theta_{\ell \nu} \sin \phi_{\nu}, \cos \theta_{\ell \nu}, \end{split}$$

The invariant mass of the $s \rightarrow WW$ system is then

$$m_{s}^{2} = (p_{W_{\text{cand}}} + p_{\ell} + p_{\nu})^{2}$$

= $(E_{W_{\text{cand}}} + E_{\ell} + E_{\nu})^{2} - (p_{x,W_{\text{cand}}} + E_{\nu}\sin\theta_{\ell\nu}\cos\phi_{\nu})^{2}$
 $- (E_{\nu}\sin\theta_{\ell\nu}\sin\phi_{\nu})^{2} - (E_{\ell} + p_{z,W_{\text{cand}}} + E_{\nu}\cos\theta_{\ell\nu})^{2}$

It can be shown that the minimum occurs when $\phi_{\nu} = 0$.

$$\begin{split} m_s^2 &= \left(E_\ell + \frac{m_W^2}{2E_\ell (1 - \cos \theta_{\ell \nu})} + E_{W_{\text{cand}}} \right)^2 - \left(\left| \vec{p}_{W_{\text{cand}}} \right| \sin \theta_{W_{\text{cand}}\ell} + \frac{m_W^2 \sqrt{1 - \cos^2 \theta_{\ell \nu}}}{2E_\ell (1 - \cos \theta_{\ell \nu})} \right)^2 \\ &- \left(E_\ell + \left| \vec{p}_{W_{\text{cand}}} \right| \cos \theta_{W_{\text{cand}}\ell} + \frac{m_W^2 \cos \theta_{\ell \nu}}{2E_\ell (1 - \cos \theta_{\ell \nu})} \right)^2, \end{split}$$

leaves only $\cos \theta_{\ell \nu}$ as an unknown

$$m_s^{\min} \equiv \min_{\cos \theta_{\ell_v}} (m_s)$$

$$f s \rightarrow WW \rightarrow qqlv system$$

1)

30

n

Reconstruction of TAR jets

