

Search for DM particles produced in association with a dark Higgs boson decaying to two W bosons

Alicia Calderón (IFCA – Univ. Cantabria - CSIC) On behalf of CMS Collaboration

Roadmap of Dark Matter models for Run 3 May 16, 2024

Work supported by PID2020-113304RB-I00

Dark Higgs Model

- An approach to probe DM at the LHC is based on a two-mediator DM (2MDM) scenario:
 - Two new bosons: Z' (spin 1) and dark-Higgs (s) (spin 0)
 - Dark-Higgs mixes minimally with the SM Higgs: constraint from measurements of the Higgs signal strengths.
 - Dark Higgs is the lightest state in the dark sector: $m_s \leq 2m_{\gamma}$

Dark Higgs Model

- The interactions between the dark-Higgs s and SM arise from mixing between the two Higgs bosons.
- Six independent parameters:

Particle masses		Coupling constants	
DM mass	m_{χ}	Dark-sector coupling	g_χ
Z' mass	$m_{Z'}$	Quark-Z' coupling	g_q
Dark-Higgs mass	m_s	Higgs mixing angle	θ

- Parameters and their recommended values from LHC DM WG: <u>1507.00966</u>
 - Small mixing between dark-Higgs (s) and SM Higgs: $\theta = 0.01$
 - Dark-sector coupling $g_{\chi} = 1$
 - Quark-*Z*' coupling $g_q = 0.25$

Dark Higgs: MET + s(WW) JHEP 03(2024)134

- Search directly for the dark Higgs production.
- Dominant Dark Higgs decay modes:
 - $b\overline{b}$ for $m_s < 160 \ GeV$
 - WW for $m_s > 160 \ GeV$
- First attempt at CMS using WW final state targeting:
 - $MET + s(WW), WW \rightarrow 2l 2\nu$
 - $MET + s(WW), WW \rightarrow l\nu qq$

Analysis selection: $s \rightarrow WW \rightarrow 2l2\nu$

2l2v Selections	2 lep + MET final
nLeptons ≥ 2	state selection
Different flavour Opposite sign	
$p_T^{l_1} / p_T^{l_2} > 25 / 20 \text{ GeV}$	- Reduce top quark
MET > 20 GeV min(proj.MET, proj.MET [™]) > 20 GeV	background
Veto 3nd loose leptons if $p_T^{I3} > 10 \text{ GeV}$	Reduce non-prompt
b-veto DeepCSV LooseWP	background
p _T "> 30 GeV	
m ^{II} > 12 GeV	Target dark-Higgs
ΔR(I,I) < 2.5	topology
m _T (ll + MET) > 50 GeV	X

 W^+

 $\bar{\nu}$

Analysis selection: $s \rightarrow WW \rightarrow 2lqq'$

 $nLeptons \ge 1$

nJet Clean ≥ 2

(p_T > 30 GeV)

p_T¹¹ > trigger threshold

Veto 2nd loose leptons if $p_T^{12} > 10 \text{ GeV}$

65 < m^{jj} < 105 GeV

b-veto DeepCSV LooseWP (excluding W candidate jets)

Δφ(ljj, MET) > 2

 $\Delta \phi(jj,l) < 1.8, \Delta R(jj,l) < 3$

m_T(I + MET) > 80 GeV

MET > 60 GeV

р_т ^{іјј} > 60 GeV

1lep + 2 jets final state selection.

Reduce W+jets background

Reduce top-quark background

Target dark-Higgs topology

Background estimation overview

Process	Analysis	Estimation	CR/Validation
Тор	2l2v Ivjj	MC + normalization freely floating, constrained by CR	Invert b-veto
W+jets	lvjj	MC + normalization freely floating, constrained by CR m _{jj} < 65 m _{jj} > 10	
Non-prompt	2l2v	Fully data-driven estimation	Same lepton charge
	lvjj		m _T (I + MET) < 30 && MET < 30 GeV
ww	2l2v	MC + normalization freely floating, constrained by CR	∆R(I,I) > 2.5
Drell-Yan	2l2v	MC + normalization freely floating, constrained by CR	m _T (II + MET) < 50 GeV

Other small processes estimated directly from simulation: $HWW, V\gamma, V\gamma^*, VZ, VVV$ * Keeping other preselection requirements

Background estimation overview $s \rightarrow WW \rightarrow 2l2\nu$

Top CR

WW CR

Drell-Yan CR

Background estimation overview $s \rightarrow WW \rightarrow 2lqq'$

Alicia Calderon (IFCA) - Run3 DM Roadmap

Analysis strategy $s \rightarrow WW \rightarrow 2l2\nu$

- 3D fit in $\Delta R_{ll} m_{ll} m_T(l_2, MET)$
 - 3 SR in ΔR_{ll} (strong dependence with dark Higgs mass)

$$m_{\mathrm{T}}^{\ell_{\mathrm{min}},p_{\mathrm{T}}^{\mathrm{miss}}} = \sqrt{2p_{\mathrm{T}}^{\ell_{\mathrm{min}}}p_{\mathrm{T}}^{\mathrm{miss}}\left[1 - \cos\Delta\phi(\vec{p}_{\mathrm{T}}^{\ell_{\mathrm{min}}},\vec{p}_{\mathrm{T}}^{\mathrm{miss}})\right]}$$

- For m_{ll} and m_T(l₂, MET) the binning is optimized for $\frac{S}{\sqrt{S+B}}$ shape.
- Allow the different signal mass points to populate the 3D parameter space while using the same background modelling procedure.

Results: $s \rightarrow WW \rightarrow 2l2\nu$

- Profile likelihood fit for 3 SR, 1 top quark background CR, 1 DY background CR, and 1 WW background CR
 - Signal regions entering in the fit: 2D histograms of $m_{ll} m_T(l_2, MET)$ for each SR.
 - Control regions information entering in the fit: 1-bin distributions. Top, WW, and DY normalization freely float within the global fit.

Analysis strategy $s \rightarrow WW \rightarrow 2lqq'$

• Using a **BDT Discriminator**

- 11 optimized kinematic inputs:
 - mostly sensitive to MET vs visible particles boost.
- 1 training for entire mass range with $m_{Z'} \ge 800 \ GeV$ samples (boosted samples with small x-sec sensitivity)
- Binning is optimized for $\frac{S}{\sqrt{S+B}}$ shape.

Variable	Definition
$p_{\mathrm{T}}^{\mathrm{jj}}$	$p_{\rm T}$ of the vectorial sum of the W candidate jets
$p_{ ext{T}}^{\ell_{ ext{jj}}}$	p_{T} of the vectorial sum of the visible particles
$p_{\rm T}^{\rm miss}$	Magnitude of the missing transverse momentum vector
$\Delta \eta_{\ell,ii}$ and $\Delta \phi_{\ell,ii}$	$\Delta\eta$ and $\Delta\phi$ between the lepton and the dijet system
$\Delta \eta_{ij}$ and $\Delta \phi_{ij}$	$\Delta\eta$ and $\Delta\phi$ between the W candidate jets
$ \eta_{\ell} $	The absolute value of the lepton pseudorapidity
$\Delta \phi_{\ell, \vec{v}_{\tau}^{\text{miss}}}$	$\Delta \phi$ between the lepton and $ec{p}_{ extsf{T}}^{ extsf{miss}}$
$\Delta \phi_{\ell m jj, ec p_T^{miss}}$	$\Delta \phi$ between the vectorial sum of the visible particles and $\vec{p}_{\mathrm{T}}^{\mathrm{miss}}$
$\min(p_{\mathrm{T}}^{\ell}, p_{\mathrm{T}}^{\mathrm{j}_2}) / p_{\mathrm{T}}^{\mathrm{miss}}$	Minimum of the lepton $p_{\rm T}$ and the next-to-leading W can- didate jet $p_{\rm T}$, divided by $p_{\rm T}^{\rm miss}$
$\max(p_{\mathrm{T}}^{\ell}, p_{\mathrm{T}}^{\mathrm{j}_{\mathrm{I}}}) / p_{\mathrm{T}}^{\mathrm{miss}}$	Maximum of the lepton $p_{\rm T}$ and the leading W candidate jet $p_{\rm T}$, divided by $p_{\rm T}^{\rm miss}$
$\max(p_{\mathrm{T}}^{\ell}, p_{\mathrm{T}}^{j_{1}}) / m_{\ell j j p_{\mathrm{T}}^{\mathrm{miss}}}$	Maximum of the lepton p_T and the leading W candidate jet p_T , divided by the invariant mass of the system of all visible particles and \vec{p}_T^{miss} , which is taken to be massless

Results: $s \rightarrow WW \rightarrow 2l2\nu$

- Profile likelihood fit for1 SR, 1 Top quark background CR and 1 W+jets background CR:
 - Signal region information entering in the fit: 1D histograms of BDT output score.
 - Control regions information entering in the fit: 1-bin distributions. Top and W+Jets normalization freely float within the global fit

Finer binning in 2017-2018 to squeeze the sensitivity

Dark Higgs: MET + s(WW)

- Observed > Expected (but still below 2 sigma) due to slight data deficit in some of the sensitive bins.
- $s \rightarrow \chi \chi$ bound reached for $m_s \ge 2m_{\chi}$
- Gray lines indicate where the model parameters produce exactly the current observed relic density, using MadDM (*Eur.Phys. J. C 83* (2023) 241).

Dark Higgs: MET + s(WW)

0 σ/σ_{theory}

10⁻¹

 $0 \sigma \sigma_{theory}$

 10^{-1}

2500

2500

2000

2000

m_{z'} [GeV]

m_{z'} [GeV]

- Most stringent limits for $m_{\chi} =$ 150 GeV
- For $m_s = 160 200 \, GeV$ $< m_{Z'} \sim 2.2 TeV$
- For $m_{Z'} = 250 1600 \, GeV$ $160 < m_s < \sim 300 \ GeV$

Final remarks

- The coupling g_q combination adopted so far are excluded by di-jet resonances for a wide range of Z' masses, but similar sensitivity as the mono-jet results.
- Would be good to explore the lower coupling parameter region where we 'could' be complementary to di-jet results.

2203.12035

Backup

Model parameters

- Search directly for the dark Higgs production.
- Dominant Dark Higgs decay modes:
 - $b\bar{b}$ for $m_s < 160 \ GeV$
 - *WW* for $m_s > 160 \text{ GeV}$
- First attempt at CMS using *WW* final state targeting: JHEP03(2024)134
 - $MET + s(WW), WW \rightarrow 2l \ 2v$
 - $MET + s(WW), WW \rightarrow l\nu qq$

- Model generation with Madgraph @LO: ZpHiggs_UFO
- Analysis mass scan (GeV):
 - $m_{\chi} = [100, 150, 200, 300]$
 - $m_s = [160, 180, 200, 300, 400]$
 - $m_{Z'} = [200 2500]$
- Z' and s bosons widths, relative to their masses, are below 1%.

Relic density

- Relic density calculations are performed with the current dark Higgs model assumptions using MadDM
 - C. Arina et al. Eur. Phys. J. C 83 (2023) 241, arXiv:2107.04598.
- Gray lines in the limit figures indicate where the model parameters produce exactly the current measurement of the observed relic density.