

Light Higgs Bosons in ATLAS and CMS experiments

Pallabi Das on behalf of the ATLAS and CMS Collaborations

Roadmap of Dark Matter models for Run 3 CERN, Geneva 16th May, 2024

Introduction

- So far the Standard Model (SM) is consistent with LHC data
 - No evidence of new particles from supersymmetry
 - Unsolved questions: matter antimatter asymmetry, dark matter in the universe...
- Several extended scalar sector models accommodate the SM Higgs boson + EW baryogengesis
 - Result in different symmetry breaking patterns because of the extra scalars
 - These scalars couple preferentially to the Higgs boson: "portal" to new physics interactions

Higgs decays to pseudoscalars

- Two-Higgs-doublet model + singlet (2HDM+S):
 - Wide range of possible exotic Higgs decays, while much of the parameter space of 2HDM is constrained by LHC experiments
 - The additional singlet has no direct Yukawa coupling, only couples to the two Higgs fields
 - Small mixing with Higgs field: $H \rightarrow aa \rightarrow SM$ particles
- Axion-like particles (ALPs):
 - Gauge singlets under SM, coupling to SM fermions
 - Enhanced coupling to photons can contribute to anomalous muon magnetic moment
 - Search channels: $H \rightarrow aa$ and $H \rightarrow Za$, effective couplings: C_{ZH}^{eff}/Λ and $C_{\gamma\gamma}^{eff}/\Lambda$

- HDBS-2019-19
- Collimated photon signatures below m_a < 3.5 GeV identified as single object
- Two types of signal: prompt and long-lived

Consider ALP mass range 0.1 < m_a < 60 GeV

Reconstruct invariant mass of the Higgs boson in signal region categories based on merged or resolved photons in the events

 $H \rightarrow aa \rightarrow 4y$

Most stringent limits till date on long-lived ALPs ($z_0 > 500 \text{ mm}$): B(H \rightarrow aa \rightarrow 4 γ) < 2 – 6 x 10⁻⁵ for $m_a > 10 \text{ GeV}$ and < 10⁻⁵ – 3 x 10⁻² for $m_a < 10 \text{ GeV}$

$H \rightarrow aa \rightarrow 4\gamma$ (boosted)

Search for very low mass pseudoscalars $0.1 < m_a < 1.2 \text{ GeV}$

- Diphoton decay is boosted and reconstructed as a single photon-like object "\Gamma"
- Using novel merged diphoton reconstruction technique of end-to-end deep learning
- Fit 2D distribution of invariant masses m_{L1} and m_{L2}

B(H \rightarrow aa \rightarrow 4 γ) below 0.9 – 3.3 x 10⁻³ for 0.1 < m_a < 1.2 GeV

Search is also sensitive to long-lived decays: For $0.1 < m_a < 0.4$, upper limits are 0.9 to 1.8 times larger for $c\tau = 1$ mm and 3 to 30 times larger for $c\tau = 10$ mm

 $H \rightarrow aa \rightarrow 4\gamma$ (resolved)

Search for SM-like $H \rightarrow aa \rightarrow 4\gamma$ in the mass range $15 < m_a < 62$ GeV:

- Four photons are well isolated
- ► Identifies the primary vertex using a BDT trained using variables related to tracks recoiling against the well reconstructed four-photon system → improves Higgs mass resolution
- Train event classifier using variables uncorrelated to m_{YYYY} and look for a 125 GeV resonance

Observed 95% CL upper limits on cross section between 0.80-0.26 fb \rightarrow B(H \rightarrow aa \rightarrow 4 γ) below ~ 10⁻⁶

Both $H \rightarrow aa \rightarrow 4\gamma$ analyses are statistically limited and no significant deviation from SM background is observed

$H \rightarrow Za, a \rightarrow \gamma \gamma$

First search at LHC for $H \rightarrow Za$ in the mass range $1 < m_a < 30$ GeV

- Using merged photon reconstruction technique to identify boosted diphoton candidate from a
- Reject FSR photons from leptons to improve Higgs mass resolution
- BDT event classifier used to select the signal region maximising significance across m_{IIYY} distribution

B(H \rightarrow Za) below ~0.1 for 1 < m_a < 30 GeV, no significant deviation from SM background observed

Also constrain effective coupling between H, Z and a within ~ 0.015 to 0.1 in this mass range

 $H \rightarrow Za, a \rightarrow \gamma \gamma$

Consider ALP mass range $0.1 < m_a < 33 \text{ GeV}$

- Merged photon reconstruction below m_a < 2 GeV identified as single object</p>
- Final state contains a lepton pair from Z decay and one (merged) or two (resolved) photons from a
- Compare expected to observation: ΔR(Z,γ) (merged) and diphoton invariant mass (resolved)

$H \rightarrow aa \rightarrow 2\mu 2b$

Search for a masses within $16 < m_a < 62 \text{ GeV}$

- A kinematic likelihood (KL) fit exploits $m_{\mu\mu} \sim m_{bb} \sim m_a$ to improve the reconstruction of $m_{\mu\mu bb}$
- The output of the fit, $ln(L^{Max})$, and $m_{\mu\mu bb}$ is used for categorisation of signal and control regions
- A BDT classifier, trained per mass point, is used to further reduce SM backgrounds in SR

95% CL observed upper limits on B(H \rightarrow aa \rightarrow 2µ2b) < 0.2–4.0 × 10⁻⁴ with the largest excess observed near m_a ~ 52 GeV at 3.3 σ local significance

Search for a masses within $15 < m_a < 60 \text{ GeV}$

- Bump hunt analysis using the dimuon invariant mass $m_{\mu\mu}$
- Completely data-driven background estimation, use mass constraints m_{µµ} ~ m_{bb} ~ m_a and m_{µµbb} ~ m_H to reject background
- Parametric fit of the signal model in different categories based on b-jet properties

95% CL observed upper limits on B(H \rightarrow aa \rightarrow 2µ2b) < (0.17–3.3)×10⁻⁴

Most stringent observed upper limit till date in this final state, slightly better than ATLAS results

H→aa→2т2b

Search for a masses within $12 < m_a < 60 \text{ GeV}$

- Final state with relatively larger BR to bb and $\tau\tau$, reconstruct $m_{\tau\tau}$ including neutrino energies
- Three final states explored: $\mu \tau_h$, $e \tau_h$, $e \mu$
- Deep neural network training in final states with 1 b-jet and 2 b-jets separately for three channels: used in event categorization to improve signal sensitivity

95% CL observed upper limits on B(H \rightarrow aa \rightarrow 2µ2b) < 1.7–7.7 × 10⁻²

 2μ 2b and 2τ2b combination: BR(H→aa) values excluded above 23% (Type II tanβ > 1), 7% (Type III tanβ = 2.0) and 15% (Type IV tanβ = 0.5)

Challenging fully hadronic final state search within $12 < m_a < 60$ GeV

- Feasible reconstruction in VH production mode, events selected using single or double-lepton trigger
- Resolved analysis: at least 3 jets in the selected events, categorised based on number of jets and bjets
- Signal-to-background discrimination using a BDT, score distribution compared to data

Assuming B(H \rightarrow aa \rightarrow 4b) = 100%, m_a values between 21-60 GeV are excluded at 95% CL

 $H \rightarrow aa/Za \rightarrow 4\mu/4e$

Higgs boson decays to spin-0 or spin-1 particles $1 < m_a < 60 \text{ GeV}$

- Reconstruct two same flavour opposite sign dilepton pairs per event
- ► For H→aa choose quadruplet with smallest $Im_{(II)1}-m_{(II)2}I$, for H→Za choose smallest $Im_Z-m_{(II)1/2}I$
- Using $m_{(II)1} \sim m_{(II)2}$, maximum likelihood fit is performed on $< m_{II} >$ distribution

Limits are also set on the Higgs boson kinetic mixing parameter with a dark Higgs sector:

Observed values are constrained below 1-6 x 10⁻⁴ for the considered mass range, assuming kinetic mixing of the dark photon with the SM photon is 10⁻⁴

Model-independent search considering $0.21 < m_a < 60$ GeV and $0 < c\tau < 100$ mm

- Interpreted in terms of vector-portal, ALPs, NMSSM, dark-SUSY models
- Long-lived muon trigger utilised for 2018 data
- Reconstruct two dimuon pairs per event where $Im_{(\mu\mu)1} m_{(\mu\mu)2}I < f(m_{(\mu\mu)1} + m_{(\mu\mu)2})/2)$

95% CL upper limit on $\sigma(H \rightarrow 2a+X)xBR^2(a \rightarrow 2\mu)$, constrained within 0.049 and 0.247 fb

Higgs portal to hidden BSM sector being explored by CMS analyses in different final states

- → Many full Run-2 results published, some are work in progress
- Improved sensitivity compared to previous searches due to changes in analysis strategy rather than the increase in data statistics alone
- No significant excess over SM prediction just yet, many other possibilities remain to be explored
 - Possibility to add $h \rightarrow Za$ search in $a \rightarrow II/jj$ channels, even $a \rightarrow \tau \tau$
 - Addition of long-lived signatures for low pseudoscalar masses
 - Results are dominated by statistical uncertainties
- Improve search strategies using new tools
 - Boosted reconstruction, triggers, adding new channels, combinations

Direct searches benefit the most with increase in luminosity: look forward to Run-3 results!

Thank You