Discussion session

Matteo Cremonesi and Felix Kahlhoefer

Presentation of results

- Standard: m_s vs. $m_{Z'}$ with fixed couplings g_q and g_χ
- Fine as long as dark Higgs decays visibly $(m_s < 2 m_\chi)$
- For larger values of m_s search completely loses sensitivity

- Possible to draw relic density line
- Annihilation channel changes: $m_s < m_{\chi} : \chi \chi \rightarrow ss$

 $m_s > m_\chi : \chi \chi \rightarrow Z' \rightarrow SM$

- In both regimes relic density is basically independent of m_s
- Step change at m_s ~ m_χ

Alternative presentation: Varying g_{χ}

- At each point fix g_{χ} by relic density requirement
- Small $m_{Z'}$ corresponds to small g_{χ}
 - → Search loses sensitivity
- Here: m_x fixed to 900 GeV
 - \rightarrow Ensures $m_s < m_\chi < 2 m_{Z'}$ everywhere
 - → Smaller m_{χ} would lead to non-perturbative couplings > $\sqrt{4\pi}$ in some parts of the plot
- Interesting to consider variations in m_{χ} ?

Alternative presentation: Varying m_{χ}

- Fix g_{χ} by relic density requirement
- Here: m_s fixed to 70 GeV (bb final state)
- For other searches, need larger value of m_s
 - → Expect jump in jump in g_{χ} when m_{χ} becomes smaller than m_s
 - → Should one indicate loss of sensitivity for $m_{\chi} < m_s/2?$
- Maybe interesting to produce these plots also for fixed g_x = 1?

Comparison plots

- It would be awesome to produce comparison plots with other searches
- Problems:
 - Dark Higgs model has Majorana fermion, while mono-X searches assume Dirac fermion
 - \rightarrow Different Z' width and branching ratios
 - → Suppressed direct detection
 - Decay mode Z' $\rightarrow \chi\chi s$ needs to be considered
 - \rightarrow (Slightly) suppresses dijet constraints
 - \rightarrow Might enhance mono-X constraints

• Reinterpretation of model-independent dijet searches might be possible

Model variant 1: Long-lived dark Higgs

- Set dark Higgs mixing to zero
- Loop-induced decay into quarks
- Long lifetime \rightarrow displaced decay
- Signature: Displaced vertex + MET
- Invariant mass of displaced vertex equal to dark Higgs boson mass

Model variant 2: Inelastic dark matter

• Excited DM state χ_2 decays into ground state and SM particles

Striking signature (e.g. displaced vertex) could provide background suppression

• Make sure search is sufficiently inclusive not to veto such events

