LHC Signatures of Flavoured Dark Matter

Monika Blanke

Collaborative Research Center TRR 257

Period Physics Phenomenology after the Higgs Discovery

Roadmap of Dark Matter Models for Run 3 CERN – May 16, 2024

What is flavoured dark matter?

© Bing 2024

Minimal assumptions

- dark matter comes in three generations
- dark flavour triplet couples to SM flavour triplet via new mediator field ➤ t-channel DM
- \bullet new flavour-violating coupling matrix λ

The flavoured DM model space

Model-building choices

- the nature of DM
 - scalar or fermion
 - real or complex representation
 - ➤ 4 options
- the SM fermion portal
 - quarks or leptons
 - left- or right-handed...
 - ➤ 5 options
- the flavour structure
 - Minimal Flavour Violation (MFV)
 - Dark Minimal Flavour Violation
 - ...?

In this talk

- introduction of DMFV framework
- quark-flavoured DM
 - complementary constraints
 - vanilla LHC searches
 - unexplored LHC signatures
- lepton-flavoured DM
 - complementary constraints
 - LHC current and future targets

From MFV to Dark Minimal Flavour Violation (DMFV)

Minimal flavour violation (MFV)

- SM flavour symmetry $U(3)_q \times U(3)_u \times U(3)_d \times U(3)_\ell \times U(3)_e$
- \bullet only broken by SM Yukawa couplings Y_u,Y_d
- \succ all flavour-violating effects governed by the same hierarchies as in the SM

Dark Minimal Flavour Violation (DMFV)

- extended flavour symmetry $U(3)_q \times U(3)_u \times U(3)_d \times U(3)_\ell \times U(3)_e \times G(3)_\chi$ where $G(3)_\chi = U(3)_\chi$ ($O(3)_\chi$) for complex (real) DM field
- $\bullet\,$ only broken by the SM Yukawa couplings and the DM-quark coupling λ
- > new source of flavour violation λ implies potentially interesting non-MFV effects > fewer free parameters than for generic flavour structure

Consequences of DMFV

Dark matter mass

AGRAWAL, MB, GEMMLER (2014)

- $G(3)_{\chi}$ symmetry ensures equal mass for all flavours to leading order
- special form of mass splitting at higher order

e.g. Dirac fermion DM: $m_{\chi_i} = m_{\chi} (\mathbb{1} + \eta \lambda^{\dagger} \lambda + \dots)_{ii}$

Parametrisation of DM-quark coupling

• $G(3)_{\chi}$ symmetry helps to remove unphysical parameters

$$\lambda = U_{\lambda} D_{\lambda} R_{\lambda}$$

- U_{λ} unitary matrix, 3 mixing angles θ_{12}^{λ} , θ_{13}^{λ} , θ_{23}^{λ} and 3 phases
- D_{λ} real diagonal matrix, e.g. $D_{\lambda} = \operatorname{diag}(D_1, D_2, D_3)$
- R_{λ} additional mixing angles and phases, only for real DM

DMFV connects coupling and mass hierarchy

DMFV ansatz ties DM mass spectrum to coupling strength via spurion expansion

$$m_{\chi_i} = m_{\chi} (\mathbb{1} + \eta \,\lambda^{\dagger} \lambda + \dots)_{ii} \simeq m_{\chi} \left[1 + \eta \,D_i^2 \right]$$

Standard hierarchy

DMFV connects coupling and mass hierarchy

DMFV ansatz ties DM mass spectrum to coupling strength via spurion expansion

$$m_{\chi_i} = m_{\chi} (\mathbb{1} + \eta \,\lambda^{\dagger} \lambda + \dots)_{ii} \simeq m_{\chi} \left[1 + \eta \, D_i^2 \right]$$

Inverse hierarchy

Basics of quark-flavoured dark matter

- three dark generations χ_i coupled to <u>quark</u> flavours q_j via coloured mediator ϕ
- lightest dark flavour χ_3 stable, DM candidate
- coupling matrix λ_{ij} is a new source of flavour and CP violation

Quark-flavoured DMFV models in the literature

- flavoured Dirac DM coupled to down-type quarks
- flavoured Dirac DM coupled to up-type quarks
- flavoured Dirac DM coupled to left-handed quark doublets
- flavoured Majorana DM coupled to up-type quarks
- ... others not studied yet!

MB, KAST (2017); JUBB, KIRK, LENZ (2017)

MB, DAS, KAST (2017)

Acaroğlu, MB (2021)

Flavour physics

Constraints from neutral meson mixing

 \triangleright

- limits from $K^0 \bar{K}^0$, $B_{d,s} \bar{B}_{d,s}$ and/or $D^0 \bar{D}^0$ mixing depending on quark flavours the dark sector couples to
- contributions from standard and, for Majorana DM, crossed box diagrams

significant constraints on the **flavour structure** of λ , in particular for DM coupling to the down-quark sector

Direct and indirect detection

Direct detection

- dominant limits from liquid Xenon experiments
- constraints on DM couplings λ_{i3}
- flavour structure can help evade stringent bounds due to partial cancellations: "xenophobic DM"

FENG, KUMAR, SANFORD (2013)

Indirect detection

- limits from antiproton flux measured by AMS-02
- > generally not competitive with direct detection constraints

DM relic density from thermal freeze-out

Freeze-out scenarios

- standard (flavoured) WIMP freeze-out
 - single-flavour freeze-out (SFF): only χ_3 contributes
 - quasi-degenerate freeze-out (QDF): all χ_i flavours participate equally

AGRAWAL, MB, GEMMLER (2014)

illustrations: Heisig @ MoriondEW 2024

DM relic density from thermal freeze-out

Freeze-out scenarios

- standard (flavoured) WIMP freeze-out
 - single-flavour freeze-out (SFF): only χ_3 contributes
 - quasi-degenerate freeze-out (QDF): all χ_i flavours participate equally

AGRAWAL, MB, GEMMLER (2014)

- including coannihilation effects
 - ➤ can deplete relic abundance

GRIEST, SECKEL (1991) BELL, CAI, MEDINA (2013)

DM relic density from thermal freeze-out

Freeze-out scenarios

- standard (flavoured) WIMP freeze-out
 - single-flavour freeze-out (SFF): only χ_3 contributes
 - quasi-degenerate freeze-out (QDF): all χ_i flavours participate equally

AGRAWAL, MB, GEMMLER (2014)

- including coannihilation effects
 - ➤ can deplete relic abundance
- conversion-driven freeze-out

for very small DM couplings (inverse hierarchy) co-scattering becomes semi-efficient

can restore correct relic abundance

Acaroğlu, MB, Heisig, Krämer, Rathmann (2023)

illustrations: HEISIG @ MORIONDEW 2024

Garny, Heisig, Lülf, Vogl (2017) D'Agnolo, Pappadopulo, Ruderman (2017)

Relevant LHC processes

Mediator pair-production

- QCD interactions (c.f. SUSY squarks)
- *t*-channel exchange of χ
- same-sign production if χ is Majorana
 > enhanced for uu(dd) → φφ

see also Garny, Ibarra, Pato, Vogl (2013)

Acaroğlu, MB (2021) Acaroğlu, MB, Heisig, Krämer, Rathmann (2023)

Mediator decay

 \bullet determined by flavour structure of λ

- chain decays via intermediate $\chi_{1,2}$ states
- soft and long-lived signatures for quasi-degenerate spectrum and/or small couplings

Vanilla LHC searches

Mediator pair-production

- applicable constraints from SUSY squark searches
- cross-section affected by *t*-channel contribution
- \bullet branching ratios determined by flavour structure of λ

Monojet

• competitive mainly in compressed region

Ex.: Limits on up-flavoured Majorana DM

- sensitivity depends on coupling pattern
- strongest bound for $m_{\chi} \neq 0$ due to same-sign production Acaroğlu, MB (2021)

Unexplored signature I: same-sign tops from Majorana DM

Same-sign top signature

Acaroğlu, MB (2021)

 $pp \to \phi \phi \to tt + \not\!\!E_T$

- top charge accessible in semileptonic final states
- cross-section in the fb regime

Naive reach estimate using CMS $ttjj + E_T$ search

- different kinematics \succ not fully applicable
- highest reach for non-zero DM mass
- rate suppressed by ${\rm BR}(t\to b\ell\nu)^2\sim 0.05$ and requirement of extra jets
- \succ not competitive (?) with jets+ $\not\!\!\!E_T$

Acaroğlu, MB, Heisig, Krämer, Rathmann (2023)

Unexplored signature II: single-top final states

Flavoured DM also induces **flavour-violating final states** – accessible with single-top • $t + j + \mathbb{E}_T$ (dominated by mediator pair-production)

MB, PANI, POLESELLO, ROVEDI (2020)

(HL-)LHC reach for single-top final states

Dedicated single-top searches (shown: up-flavoured Dirac DM)

- cover additional parameter space
- probe thermal freeze-out in SFF scenario

(HL-)LHC reach for single-top final states

Dedicated single-top searches (shown: up-flavoured Dirac DM)

- cover additional parameter space
- probe thermal freeze-out in SFF scenario
- have significant discovery reach in particular at HL-LHC

Unexplored signature III: single-top charge asymmetry

Single-top charge asymmetry for Majorana DM

- combine previous insights on same-sign production and flavour-violating final states
- consider single-top charge asymmetry

- $a_{tj} > 0$ only for Majorana flavoured DM $a_{tj} \sim 0$ for Dirac flavoured DM
- highly promising smoking gun signature!

Acaroğlu, MB, Heisig, Krämer, Rathmann (2023)

Unexplored signatures IV: LLPs with intermediate lifetimes

- relevant limit: stable R-hadrons (using SModelS reinterpretation tool)
- intermediate lifetimes not constrained

Opportunities for future LLP searches

LLPs with intermediate decay lengths and soft decay products

Covering entire lifetime range

- searches for heavy stable charged particles
- searches for diasppearing tracks
- searches for displaced jets
- E_T searches HEISIG, LESSA, RAMOS (2024) see talks by A.Lessa, J.Heisig

Acaroğlu, MB, Heisig, Krämer, Rathmann (2023)

Lepton-flavoured DM in a nutshell

- three dark generations χ_i coupled to lepton flavours l_j via charged mediator ϕ
- lightest dark flavour χ_3 assumed stable, DM candidate
- \bullet coupling matrix λ_{ij} is a new source of flavour and CP violation in the lepton sector

Lepton-flavoured DMFV models in the literature

- flavoured Dirac DM coupled to right-handed leptons
- flavoured complex scalar DM coupled to right-handed leptons Acaroğlu, Agrawal, MB (2022)
- ... others not studied yet!

Acaroğlu, MB, Tabet (2022)

Constraints and opportunities

Relevant constraints

- charged lepton flavour violation
- lepton magnetic dipole moments
- direct and indirect DM detection
- > significantly lighter masses possible with inverse DM hierarchy $(\eta > 0)$

Opportunities

- scalar lepton-flavoured DM allows for NP resolution of $(g-2)_{\mu}$ anomaly
- possible connection to neutrino mass generation? (c.f. scotogenic model)

Acaroğlu, Agrawal, MB (2022) Acaroğlu, MB, Tabet (2023)

Lepton-flavoured DM at the LHC

Available constraints

- EW scale DM and mediator accessible to LHC searches
- mediator pair-production via Drell-Yan
- limits from $l^+l^- + E_T$ searches,

including soft lepton final states *note:* rate not lepton-flavour universal

Acaroğlu, MB, Tabet (2023)

Ideas for future targets

caveat: present in SM due to neutrino flavour, often used as control region

- more complicated topologies with multi-lepton final states
- LLP signatures: displaced vertices, compressed spectra from conversion-driven freeze-out

Conclusions

Flavoured dark matter

- extension of *t*-channel framework with dark sector flavour structure
- many different models possible, both in the quark and lepton sectors
- rich phenomenology with complementary constraints from flavour physicss, precision tests, relic abundance, DM (in)direct detection, and LHC searches
- various novel LHC signatures to be explored