

NEUTRON

MAT

MYON

Experimental bounds on t-channel models with heavy flavours

Deborah Pinna

(University of Wisconsin)

Roadmap of Dark Matter models for Run3

CERN, 13-17 May

Dark matter? signature and phenomenology at collider

assume weak interactions with SM

- Empirical evidence of DM from astrophysical observations at different scales
 - interacts gravitationally, long lived and neutral
 - no information about its nature
 - * most studied class of theories: DM is a weakly interacting massive particle
- DM could be produced at colliders (rare process)
 - no direct trace in the detector, but could create a p_T imbalance (**MET**)
 - need visible particle to which DM particle recoils against
 - "mono-X searches": X includes jets, vector bosons, top, ...
- Which type of events do we study at colliders? can assume different interactions

spin-I	vector $g_q \sum_q V_\mu \bar{q} \gamma^\mu q$	$\begin{array}{c} \textbf{axial-vector} \\ g_q \sum_q A_\mu \bar{q} \gamma^\mu \gamma^5 q \end{array}$	9 Х(том) Меd(m _{med}) gq gDM
spin-0	$\frac{\text{scalar}}{g_q \frac{\phi}{\sqrt{2}} \sum_f y_f \bar{f} f}$	pseudoscalar $g_q \frac{iA}{\sqrt{2}} \sum_f y_f \bar{f} \gamma^5 f$	q χ parameters: m _{DM} , m _{med} , gq, gDM

* <u>benchmark models</u>: kinematically distinct set of model parameters

ATLAS/CMS DM forum [arXiv:1507.00966]

Dark matter? phenomenology at colliders

▶ Which type of events do we study at colliders?

Simplified models

- one s-channel mediator (t-channel med also possible)
 - * interaction type define most sensitive signatures
 - * possible extensions with additional dark sector particles
- invisible and visible final states
- Higgs boson could be the SM-DM mediator

2HDM

- ▶ two-Higgs doublet extensions with vector Z' or pseudo-scalar a
- couplings prioritize third generation and signatures with vector and Higgs bosons

- visible: dark mediator particles can decay back to SM particles (especially if sector's lightest state)
- displaced (long-lived): production of dark sector particle with significant lifetime that decays visibly to SM

<mark>х(т</mark>рм) [q]

9

directly, leading to a ine a model where χ is mediating particle, labe

Med(m_{med})

 $g_{\text{product}} = \frac{h/Z}{\bar{x}}$ $g_{\text{product}} = \frac{h/Z}{\bar{x}}$

axial-vector

bseudoscalar

vector

scalar

spím-1

spín-o

Reminder:

* choose X to exploit coupling \propto to quark mass (or increase xsec)

Spin-O mediator: simplified models

Signature: large MET and 2 top quarks

OROTON

NEWTR

DM+tt

ATLAS: <u>arXiv:2404.15930</u>

tt+MET search

▶ 1 - Selection: events categorized based on #leptons

Reminder: pseudoscalar scalar $\left| g_q \frac{\phi}{\sqrt{2}} \sum_{r} y_f \bar{f} f \right| g_q$ * choose X to exploit coupling \propto to quark OROTON mass (or increase xsec) Spin-O mediator: simplified models Signature: large MET and 1 top quark TRINO DM+top: t/tW-channel ATLAS: arXiv:2404.15930 DM

selected most recent results

Reminder:

* choose X to exploit coupling \propto to quark mass (or increase xsec)

DM+tt

Spin-0 mediator: simplified models

Signature: large MET and 1(2) top quarks DM+top: t/tW-channel

OROTON

CMS: <u>EXO-22-014</u>

t(tt)+MET search

Ş CMS: <u>EXO-22-014</u>

55

▶ 1 - Selection: events categorized based on #leptons, # b-jets and #forward jets

S- Results: interpretation in terms of DM model with Dirac DM upper limits at 95% CL on xsec

Reminder:

★ choose X to exploit coupling ∝ to quark mass (or increase xsec)

Spin-0 mediator: simplified models

Signature: large MET and 2 bottom quarks

OROTON

NEW

DM+bb

ATLAS: <u>arXiv:2404.15930</u> CMS: <u>SUS-23-008</u>

bb+MET search

ATLAS: <u>arXiv:2404.15930</u>
CMS: <u>SUS-23-008</u>

▶ 1 - Selection:

S- Results: interpretation in terms of DM model with Dirac DM upper limits at 95% CL on xsec

13-17 May 2024

- 0

Heavy-flavour +MET: can we go from s- to t-channel?

t(b)+MET: can we go from s- to t-channel?

s-channel

t-channel

mediator couples to pair of dark matter or SM particles

mediator interacts with one SM state and the dark matter

t-channel models at LHC: mono-jet

what about DM+heavy-flavour?

- existing literature shows that other flavor states could also contribute to LHC signals from t-channel mediators
- but such models have not been studied as extensively as others
- some signatures might be similar to already studied ones (eg. stop quarks production)
- other might give signatures covering different space-space, eg. is the request of large angular distance between MET and jets still valid?

Summary

directly, leading to a different phenomenology. For completeness, we examine a model where χ is a Standard Model (SM) singlet, a Dirac fermion; the mediating particle, labeled ϕ , is a charged scalar color triplet and the SM particle is a quark. Such models have been studied in Refs. [?, ?, ?, ?, ?, ?]. However, these models have not been studied as extensively as others in this Forum. Following the example of Ref. [?], the interaction Lagrangian is written as

