Long-lived particles and t-channel models

Jan Heisig

Roadmap of Dark Matter models for run 3 CERN, May 13-17, 2024

Cosmo constraints and prompt searches

Minimal *t*-channel mediator models

Evading astrophysical bounds Small couplings Long-lived particles

Evading astrophysical bounds Small couplings Long-lived particles

Evading astrophysical bounds Small couplings Long-lived particles

Masses:

• up to 10^9 GeV \Rightarrow bulk out of reach

• up to few TeV \Rightarrow testable at colliders!

■ up to few TeV ⇒ testable at colliders!

• soft \Rightarrow current gaps

Example I

Garny, JH 2112.01499]

Anomalous tracks (Heavy stable charged particle searches) $c\tau_Y > 1 \text{ m}$

LHC Signature Yp _ Disappearing tracks $10 \,\mathrm{cm} \lesssim c \tau_Y \lesssim 1 \,\mathrm{m}$ Anomalous tracks (Heavy stable charged particle searches) $c\tau_Y > 1\,\mathrm{m}$

LHC Signature

Displaced vertices (+MET) $4 \text{ mm} \lesssim c \tau_Y \lesssim 30 \text{ cm}$

Disappearing tracks $10 \text{ cm} \lesssim c\tau_Y \lesssim 1 \text{ m}$

Anomalous tracks (Heavy stable charged particle searches) $c\tau_Y > 1 \text{ m}$

Current LHC constraints

[JH, A. Lessa, L.M.D. Ramos 2404.16086]

[see also Fuks et al., contr. 7 in 2002.12220]

Current LHC constraints

[JH, A. Lessa, L.M.D. Ramos 2404.16086]

[see also Fuks et al., contr. 7 in 2002.12220]

- Number of displaced tracks: $n_{\rm trk} \ge 5$
- Invariant mass of displaced vertex: $m_{\rm DV} > 10 \,{\rm GeV}$

- Number of displaced tracks: $n_{\rm trk} \ge 5$
- Invariant mass of displaced vertex: $m_{\rm DV} > 10 \,{\rm GeV}$

- Number of displaced tracks: $n_{\rm trk} \ge 5$
- Invariant mass of displaced vertex: $m_{\rm DV} > 10 \,{\rm GeV}$

- Number of displaced tracks: $n_{\rm trk} \ge 5$
- Invariant mass of displaced vertex: $m_{\rm DV} > 10 \,{\rm GeV}$

- Number of displaced tracks: $n_{\rm trk} \ge 5$
- Invariant mass of displaced vertex: $m_{\rm DV} > 5 \,{\rm GeV}$

Current LHC constraints

[JH, A. Lessa, L.M.D. Ramos 2404.16086]

Potential LHC constraints

[JH, A. Lessa, L.M.D. Ramos 2404.16086]

Other searches

 \tilde{G}

10

0 95% observed CL upper limit on cross section (fb)

-

Example II

Minimal quark-philic models

Monika's talk Non-Minimal models (Flavored DM)

Example II

Minimal quark-philic models

Monika's talk Non-Minimal models (Flavored DM)

Minimal lepto-philic models

Non-Minimal models (Lepton flavored DM)

Example II Monika's talk Non-Minimal models Minimal quark-philic models (Flavored DM) Non-Minimal models Minimal lepto-philic (Lepton flavored DM) models

Example II

Charged mediator

Dark Matter Multiplet

Further motivation:

Simultaneously explain <u>DM</u> and the <u>baryon asymmetry</u> via conversion-driven leptogenesis [JH 2404.12428]

Example II: Conversion-driven freezes-out and leptogenesis

 m_{ϕ} [GeV]

 m_{ϕ} [GeV]

300

(5, 0.95)

400

500

600

0.001

10⁻⁴

100

200

Conclusion

- WIMP parameter space (MET signatures) highly constrain within minimal models
- Parameter region evading bound ↔ small couplings ↔ long-lived particles
- Great potential for (non-)thermalized case
- Non-thermalized case draws particular attention:
 - accessible parameter space
 - soft displaced objects, not yet well covered
 ⇒ prime target for future investigations
- Combine primary and displaced track information ('kinked tracks')