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1. Top flavour-changing neutral currents



Why  is extremely small in the SM?t → qX
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Let us take for example the Yukawa Lagrangian in the SM 

The tree-level Yukawa Higgs couplings to quarks is diagonal in flavour ⟹ iℳ(t → cH) = 0
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What about the one-loop order?

Small because: 

Unitarity of the CKM matrix 

Small mass differences between the 

 quarks running the loops.



: Theory predictionst → qX
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The rates of  in the SM have been calculated nearly 33 years ago (G. Eilam, J. L. Hewett, 
A.Soni, PRD44 (1991) 1473-1484)  Too small to be observed even at HL-LHC or FCC-hh!!

t → qX
⟹

Beyond the SM predictions? 

Flavor conserving (FC) 2HDM (Santi Bejar, hep-ph/0606138) 

Flavor violating (FV) 2HDM (J.A. Aguilar-Saavedra, hep-ph/0409342; David Atwood et al., hep-ph/9609279) 

The MSSM (J.J. Cao et al., hep-ph/0702264)  

The MSSM with R-parity violation (Jin Min Yang et al., hep-ph/9705341; G. Eilam et al., hep-ph/0102037).  

Warped extra dimensional models (Kaustubh Agashe et al., hep-ph/0606293; Kaustubh Agashe et al., 0906.1542)

Process 2HDM (FC) 2HDM (FV) MSSM RPV–MSSM RS

BR(t ! Zc)  10�10 10�6 10�7 10�6 10�5

BR(t ! Zu)  � � 10�7 10�6
�

BR(t ! gc)  10�8 10�4 10�7 10�6 10�10

BR(t ! gu)  � � 10�7 10�6
�

BR(t ! �c)  10�9 10�7 10�8 10�9 10�9

BR(t ! �u)  � � 10�8 10�9
�

BR(t ! Hc)  10�5 2 ⇥ 10�3 10�5 10�9 10�4

BR(t ! Hu)  � 6 ⇥ 10�6 10�5 10�9
�
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1 Introduction

2 Theoretical Framework

In this work, we consider a minimal simplified model with a t–channel scalar mediator (S)

that carries a colour charge and a right-handed fermion (�) that plays the role of the DM

candidate. In this framework, the DM particle interacts primarily with SM quarks through

a Yukawa-type interaction. There are three minimal classes of models depending on how the

scalar mediator transforms under SU(2)L and what are the hypercharge assignments of the

scalar mediator. In this study, we consider one possible scenario where the scalar mediator

couples to right-handed up-type quarks. In this framework, the new states transform as

S : (3,1)+2/3, � : (1,1)0, (2.1)

– 1 –



Direct connection between DM and top FCNCs?
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Theoretically it is possible to have a DM that couples solely to the quark sector of the SM.

In this case the mediator must have a color charge and therefore interacts via QCD with gluons. 
These models are called t-channel models (C. Arina et al., 2010.07559, 2307.10367)

In all these studies, the mediator is assumed to couple to one generation only! 
 Avoiding constraints from flavor physics especially FCNC decays.⟹

What if the mediator couples to all the quark generations (minimal) 
   The presence of DM and mediator will generate FCNC processes at the one-loop order.⟹

Depending on the spin of the mediator and DM, there are six minimal models for  singlet 
mediators and six models for  doublets! 

SU(2)L
SU(2)L



The model
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We extend the SM with two  singlets: a colored scalar ( ) and a right-handed fermion ( )SU(2)L S χ

S : (3, 1)+2/3, χ : (1, 1)0

The right-handed fermion ( ) is a suitable DM candidate if .χ Mχ < MS

Both  and  are odd under an ad-hoc  symmetry while all the SM particles are even.χ S Z2

The interaction of  to quarks resembles that of squark-quark-neutralino in supersymmetric 
models.

χ



The model
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Lagrangian

 and S χ Scalar potential

Relevant for DM annihilation,  

DM and S production at colliders. 

Relevant for DM co-annihilation,  

Higgs decays. 



The model
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After electroweak symmetry breaking, one lefts with three extra states: .S, S†, χ

Parameters: 

Two masses:  and  

Two quartic couplings:  and . 

Three dark-matter couplings:  and 

MS Mχ

λ2 λ3

Yu, Yc Yt

Parameter ranges: 

 

 

. 

 

 (for illustration).

Mχ ∈ [20, 2000] GeV

Δ ≡ MS − Mχ = 100, 300, 500 GeV

YqYt = 0.5, 1, 3

λ2 = 1

λ3 = − 1, 0, 1, 3



Top quark FCNC decays
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In this work, we consider two FCNC decays of the top quark:  and t → qH t → qZ

where the numbers refer to their representations under SU(3)c ⌦ SU(2)L ⌦ U(1)Y . On

the other hand, both the scalar mediator and the DM candidate transform as odd under

Z2 while all the SM particles are even under the same symmetry. To ensure that the DM

particle is stable we also require that M�  MS . The most general Lagrangian is given by

L � LS + L� � V (S, �), (2.2)

where LS , L� and V (S, �) refer to the kinetic Lagrangian of the mediator, the Yukawa-

type Lagrangian of the DM particle and the scalar potential respectively. The two first

Lagrangians are given by

LS + L� = (DµS)†(Dµ
S) + S

X

q=u,c,t

Yq q̄
c

R�, (2.3)

where Dµ is the covariant derivative and Yq; q = u, c, t are generation-dependent Yukawa-

type couplings. To simplify the analysis we assume that these couplings are universal in

the sense that Yu = Yc = Yt. In the second term of the Lagrangian in equation 2.3 one can

see that only one scalar mediator couples to all the SM quark generations. Therefore, one

Assuming CP–conservation, the most renormalisable and gauge-invariant scalar potential

is given by

V (S, �) = �m
2

11|�
†�| + m

2

22|S
†
S| + �1|�

†�|
2 + �2|S

†
S|

2 + �3|S
†
S||�†�|

2
, (2.4)

here � = (0, (� + H)/
p

2)T refers the SM Higgs doublet given in the unitary gauge. All

the parameters in the scalar potential are assumed to be real-valued parameters. Without

loss of generality we assume that �2 = 1 while �3 is subject to constraints from H ! gg

and H ! �� signal strength measurements. The impact of these constraints on �3 will be

discussed in the next sections.

3 Top quark FCNC decays

In this work, we consider the FCNC two-body decays of the top quark. They are mediated

by the loops of scalar mediators and dark matter. We show the examples of Feynman

diagrams for these processes in figure 1. The generic expression for the e↵ective operators

for the t ! qZ and t ! qZ, q = u, c is given by

�Le↵ = t̄�
µ(fL

tqZPL + f
R

tqZPR)qZµ + t̄p
µ(gLtqZPL + g

R

tqZPR)qZµ

+ t̄(fL

tqHPL + f
R

tqHPR)qH + h.c., (3.1)

where f
L,R

tqX
(X = Z, H) and g

L,R

tqZ
are form factors that are calculable at the one-loop order,

PL,R = (1 ⌥ �5)/2 are the projection operators and p
µ is the four-momentum vector of the

decaying top quark.

– 2 –

The effective Lagrangian can be written as

 are the form factors calculable at the one-loop order.fL,R
tqX ; gL,R

tqZ



Top quark FCNC decays
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BR(t → qX) ≡
Γ(t → qX)

Γ(t → bW )NNLO
r ≡

BR(t → qZ)
BR(t → qH)
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Dark matter relic density
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The relic density of the  is generated through the standard freeze-out mechanism.χ

χχ → qαq̄β χS → qαγ/Z/H/g (for ) Δ/Mχ < 0.1
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Future prospects at colliders
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(b)

– 14 –
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Benchmark points
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Benchmark points
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2. Flavour anomalies



Flavour anomalies
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There are strong hints for the breakdown of the lepton flavour universality in 
the heavy meson decays…. UPDATE: They are going away! 

RK(*) ≡
BR(B → K(*)μ+μ−)
BR(B → K(*)e+e−)

RD(*) ≡
BR(B → D(*)τν̄τ)
BR(B → D(*)ℓνℓ)

To address both the anomalies two species of Leptoquarks are usually introduced  
 models —  with couplings to taus and electrons (O. Popov, M. Schmidt, G.White, 

1905.06339) 
Two-leptoquark model inspired by GUT: . The two Leptoquarks couple to muons and 
taus (D. Becerivic et al. 1806.05689) 
The singlet-triplet model: . Can also addresses the muon anomalous magnetic 
moment (A. Crivellin, D. Muller, F. Saturnino, 1912.04224)

R2 (3, 2)7/6

R2 and S3

S1 and S3



A simultaneous solution to  and DMRD(*)
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We minimally extend the Standard Model with three extra states: a scalar 
Leptoquark singlet , a colored Dirac fermion  and a Majorana fermion (S1) (χ1) (χ0)

S1 : (3, 1)−1/3, χ1 : (3, 1)−1/3, χ0 : (1, 1)0

Even under Z2 Odd under Z2

The most general Lagrangian is thus given by

ℒ ⊃ ℒkin + [λRuc
RℓRS†

1 + λLQc
L ⋅ LLS†

1 + yχ χ1χ0S1 + h . c . ]
Link to the FR model file: https://feynrules.irmp.ucl.ac.be/wiki/LQDM



Benchmark slopes and benchmark scenarios
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The results shown in the previous slide are displayed in the plane defined by  

λ̃L ≡ (λL)33(TeV/MS1
) and λ̃R ≡ (λR)23 (TeV/MS1

)

A choice of  and  defines a benchmark slope (BS) while adding the LQ mass 
define the benchmark scenario (BS) 

λ̃L λ̃R

BS1a Latin character defines 
the benchmark scenario

Arab numeral defines 
the benchmark slope

Two benchmark slopes are 
defined throughout this 
study: 

BS1:  
BS2: 

(λ̃L, λ̃R) = (0.7, 0.3)
(λ̃L, λ̃R) = (0.24, 1.0)



Benchmark slopes and benchmark scenarios
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Some characteristics of the Benchmark scenarios being used for yχ = 0



LHC constraints: Introduction
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In this model, we have three major classes of LHC constraints:

Missing energy searches: In this case, a pair of  particles are produced and 
then decays into . Depending on the mass splitting, one can have 
various signatures: mono-jet, soft-lepton, multijet+MET, tautau+MET 
Leptoquark searches: This case has two sub-categories which are either 
through leptoquark pair production (lead to two quarks+two leptons) or 
single leptoquark production (leads to one lepton and two quarks). 
Resonant leptoquark plus MET: This can be relevant in case of leptoquark 
pair production with one leptoquark decays to quark and lepton and the 
other one invisibly.

χ1
ℓqχ0



LHC constraints: MET searches
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LHC constraints: MET searches
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LHC constraints: Leptoquark searches
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LHC constraints: Resonant Leptoquark plus MET searches
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Dark matter relic density
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Freeze out Conversion-driven freeze-out (CDFO)

The relic density of  can be produced in three different scenarios: 
Conversion-driven freeze-out (CDFO): interaction in the dark sector (requires 
very small mass-splitting and small couplings). 
Freeze-out with co-annihilation: Small mass splitting between  and . 
Freeze-out with annihilation: No requirements (lead to four body final states…) 

χ0

χ0 χ1



Dark matter relic density
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The money plot (BS1)
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Benchmark scenarios for future searches
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Conclusions
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In this talk, I discussed two interesting scenarios for BSM physics:  
- Solution to DM and flavor anomalies 
- DM as trigger of larger top quark FCNC decays

The two models are minimal extensions of the SM with singlets.SU(2)L

Decent rates for top quark FCNC decays are predicted while not being in conflict 
with current LHC data and more work is needed to probe the connection between 
the two sectors.

We have found some holes in the ATLAS/CMS searches of leptoquark pairs at the LHC 
notably the mixed ones:  and  and that more work is needed in the resonant 
LQ plus MET searches.

cτtτ cτbν



3. Back-up slides



Searches for top quark FCNC decays at the LHC
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The decays of the mediator of top FCNCs
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The mediator decays solely into a quark and DM (dominates over the 3-body decays)

Some comments: 

For , the mediator decays solely to light quarks with equal  

 branching ratios if . 

For  the decay into top quarks opens up with branching ratio going from a few %  

 to  or even more depending on the couplings ( ) and the mediator mass.  

Δ ≡ MS − Mχ < mt

Yu = Yc

Δ > mt

1/3 Yu, Yc, Yt



Top quark FCNC decays
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Figure 1. Examples of Feynman diagrams for the t ! qH (upper panel) and t ! qZ (lower panel)
decays.

The expressions of the one-loop induced form factors are found using FeynArts ver-

sion 3.11 [1], FormCalc version 9.9 [2]. They are given by
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Figure 1. Examples of Feynman diagrams for the t ! qH (upper panel) and t ! qZ (lower panel)
decays.
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The most important bound from the LHC comes from the search of new physics in events with at 
least one jet plus missing energy   

We use the most recent search of DM in 
the mono-jet channel by the ATLAS 
collaboration  (ATLAS-EXOT-2018-06). 

139 1/fb of data collected between 2015 
and 2018. 

26 signal regions depending on Emiss
T
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Bounds were obtained by using an implementation of the search in the MadAnalysis 5 framework
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What about the impact on the SM Higgs Boson measurements (production and decay)?

H

γ

γ

t

t

t
H

γ

γ

W

W

W
H

γ

γ

S

S

S

t

Z

q

S

χ

S
t

Z

qt

χ

S
t

Z

qq
χ

S

– 2 –

Consider for example the partial width of H → γγ κX = ΓX /ΓSM
X (good measure) 

uū, cc̄. On the other hand, the contribution to decay processes like ZZ
⇤ are subleading as

was found in Refs. [32–34]. The main aim of this section is to evaluate the following ratio

i =

s
�i

�SM

i

, (6.1)

with �i ⌘ �(H ! ii) and i = g, �, u, c. We start with the bosonic decay channels. In

this model, the new contribution to these decay widths depends solely on the mass of the

colored mediator (MS) and the quartic coupling (�3). The partial decay widths for �� and

gg channels are given by
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with ⌧i = m
2

H
/(4m

2

i
), A1/2(⌧) = 2⌧

�2(⌧ + (⌧ � 1)f(⌧)), A1(⌧) = �⌧
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2 + 3⌧ + 3(2⌧ �

1)f(⌧)), A0(⌧) = �⌧
�2(⌧ � f(⌧)), and f(⌧) is the one-loop function which can be found

in e.g. Ref. [35]. The results for � are similar to the case of minimal lepton portal DM

or the inert Higgs doublet model [36, 37]. In the SM, the contribution of the W -boson to

�(H ! ��) is dominant as compared to the contribution of the top quark and it comes

with an opposite sign. The contribution of the colored scalar is mainly controlled by the

value of �3. We can see that there are destructive (constructive) interference for positive

(negative) values of �3 with the dominant W -boson contribution. The situation is di↵erent

for the case of H ! gg since the only dominant contribution in the SM is that of the

top quark. The new scalar contribution comes with the similar sign for �3 > 0 leading to

enhancement while it reduces the rate of H ! gg for negative �3. These features can be

clearly seen in Fig. 7 where we show the dependence of � (left) and g on MS for di↵erent

values of �3. We can see that g and � are anticorrelated in this model since for example

the new scalar loops induce positive (negative) contributions to � (g) when �3 < 0. To

compare with the experimental data, we also show the recent measurements of � and g

reported on by the ATLAS collaboration [38]. We can see that the new measurement does

not prefer light scalars as masses of order 200–300 GeV are excluded for all but �3 = 0.

We turn now into a brief discussion of the contribution of the new states to the fermionic

rates i.e., H ! uū and H ! cc̄. The partial width for these channels is given by

�(H ! qq̄) = �(H ! qq̄)N3LO + ��(H ! qq̄)NP, (6.3)

where �(H ! qq̄)N3LO is the decay width in the SM calculated at N3LO including renor-

malised running quark masses [39, 40] and ��(H ! qq̄)NP is the model contribution to

the decay width which is given by

��(H ! qq̄)NP =
6mHmq
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, (6.4)
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What about the decays of the SM Higgs into quarks?
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uū, cc̄. On the other hand, the contribution to decay processes like ZZ
⇤ are subleading as

was found in Refs. [32–34]. The main aim of this section is to evaluate the following ratio
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for the case of H ! gg since the only dominant contribution in the SM is that of the

top quark. The new scalar contribution comes with the similar sign for �3 > 0 leading to

enhancement while it reduces the rate of H ! gg for negative �3. These features can be

clearly seen in Fig. 7 where we show the dependence of � (left) and g on MS for di↵erent

values of �3. We can see that g and � are anticorrelated in this model since for example

the new scalar loops induce positive (negative) contributions to � (g) when �3 < 0. To

compare with the experimental data, we also show the recent measurements of � and g

reported on by the ATLAS collaboration [38]. We can see that the new measurement does

not prefer light scalars as masses of order 200–300 GeV are excluded for all but �3 = 0.
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Corrections must be small!!
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Corrections are small for moderate values of  (percent level)Yq
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Evolution of the flavour anomalies
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Solutions to the  anomaliesRD(*)
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In principle, only two entries of the  and  coupling matrices are enough to 
address  anomalies: . 

λL λR
RD(*) (λL)33 and (λR)23

NOTE 1:  would give an unacceptable large contribution to . 
NOTE 2:  would require right-handed neutrinos.  

(λL)23 ≠ 0 BR(B → Xsνν̄)
(λR)33 ≠ 0

We demand that not only the  anomalies are addressed but also that 
experimental measurements do not challenge the theory in a number of 
observables such as: test of lepton universality in  decays,  and 
the tail of the  distribution in 

RD(*)

τ BR(B+
c → τ+ν)

pT pp → ττ
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NOTE 1:  would give an unacceptable large contribution to . 
NOTE 2:  would require right-handed neutrinos.  

(λL)23 ≠ 0 BR(B → Xsνν̄)
(λR)33 ≠ 0

We demand that not only the  anomalies are addressed but also that 
experimental measurements do not challenge the theory in a number of 
observables such as: test of lepton universality in  decays,  and 
the tail of the  distribution in 
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Production rates of LQs and DM 
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Decay rates of LQs
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The decay rates of the Leptoquark  depend on the dark coupling  as well. 
The decays of the dark colored particle ( ) are always three-body!! 
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Dark matter in the LQ model: Direct detection
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The spin-independent cross section occurs at the one-loop order
Contribution of the gluon form factors is dominant 

 The constraints are not sensitive to the BS — 
either BS1 or BS2 are fine
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Dark matter relic density in the LQ model
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Minimum  is required to reach a threshold for the 
inverse  reaction (depends on the mass 
splitting). 

A plateau is observed where DM production is 
dominated by QCD-induced  co-
annihilations. 

Processes such as  eventually start to 
contribute more significantly when  increases. 

The relic density is proportional to the mass splitting 
. Therefore, for large values of , 

the correct relic density is only produced for freeze-
out.  

For some threshold of , the relic density cannot be 
correctly produced (unless ). 

yχ
χ0 → χ1

χ1χ1 → SM SM

χ1χ0 → SM SM
yχ

Δ ( ≡ Mχ1
− Mχ0

) Δ

Δ
Mχ0

> MS1


