Beyond the

Dark matter effective field theory and a simplified model approach at colliders

Myeonghun Park (Seoultech / KIAS)

Based on Seungwon Baek, P. Ko, Myeonghun Park, Wan-II Park, Chaehyun Yu (Physics Letters B 756 (2016) 289)

Roadmap of Dark Matter models for Run 3

Simplified model since 2011

- Simplified Models for LHC New Physics Searches (arXiv:1005.2838)
 - Signature based approach (to be model independent)

= can be recasted to various models (DM production processes)

Simplified Models for Dark Matter Searches at the LHC (arXiv:1506.03116)
 1) Type of Dark Matter : Spin, (Gauge charge under the SM)
 2) Type of Mediators : Spin, The Standard Model particles to interact with. (Gauge charge under the SM)

- Criteria for Simplified Models \ni Lagrangian should contain (in principle) <u>all terms</u> that are **renormalizable** and consistent with Lorentz invariance, the SM gauge symmetries, and DM stability.

Simplified model in action

 "The additional interactions should not violate the exact and approximate accidental global symmetries of the SM...", for example flavor : Minimal Flavor Violation (MFV)

- For "MFV Spin-0 s-channel model", interactions with the Spin-0 mediator with quark sector should be of **Yukawa type**.

$$\mathcal{L} \supset -\sum_{i,j} \left((Y^u)_{ij} \bar{q}_i H u_j + (Y^d)_{ij} \bar{q}_i \tilde{H} d_j + \text{h.c.} \right) \blacksquare \mathcal{L} \supset -\frac{h}{\sqrt{2}} \sum_i \left(y_i^u \bar{u}_L^{(i)} \bar{u}_R^{(i)} + y_i^d \bar{d}_L^{(i)} d_R^{(i)} \right)$$

S: "Dark higgs" Mono-X + MET tt + MEg \boldsymbol{g} فمومو 00000 tgS t tt 00000 10000 t \boldsymbol{g} \boldsymbol{q}

Unitarity violation from disregarding gauge symmetry

• If you use only one operator, say $S \bar{t}t$, it breaks SU(2) gauge symmetry explicitly, it may come from ...

 $\mathcal{L}_{\mathrm{Yuk}} \supset -g_{Htt} \ \bar{t}tH \ \text{or} \ ig_{Att} \ \bar{t}\gamma_5 tA \,,$

Chiorgio Arcadi, Abdelhak Djouadi, Martti Raidal)

which can be generated via a dimension-5 or higher operator for instance

 Thus, this operator is an effective operator, it should have a cut-off Otherwise, you will have the side-effect of unitarity violation, usually over-sampled high-p_T events in our Monte Carlo samples that will overestimate analysis result (= limit)

- But singlet scalar ("Dark Higgs") can't have renormalizable interaction with SM fermion f as $S\bar{f}f$ breaks SU(2) gauge symmetry.
- Also, SM Higgs doesn't have a dim-4 operator with SM singlet DM field.
 - It has a dim-5 operator $H^{\dagger}H\bar{\chi}\chi$ for Fermionic DM or dim-6 $H^{\dagger}HF_DF_D$ for Vector DM

 Thus, (as we know) we need to have both "SM Higgs" and "Dark Higgs" to keep SM gauge invariance within dim-4, renormalizable interaction terms. • Thus, we need to have **both** "**SM Higgs**" **and** "**Dark Higgs**" to keep SM gauge invariance within dim-4, renormalizable interaction terms.

Simplified model in action with respecting the SM Gauge symmetry \rightarrow more structures $\mathcal{L} \ni \lambda_{HS} H^{\dagger} H S^2 - \mu_{HS} S H^{\dagger} H - \mu_0^3 S - \frac{\mu_S}{3!} S^3 - \frac{\lambda_S}{4!} S^4$

> - to the Mass eigenstate $\begin{pmatrix} m_{hh}^2 & m_{hs}^2 \\ m_{hs}^2 & m_{ss}^2 \end{pmatrix} \equiv \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} m_1^2 & 0 \\ 0 & m_2^2 \end{pmatrix} \begin{pmatrix} \cos \theta - \sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ $H_1 = h \cos \theta - s \sin \theta, \text{ (SM Higgs like)}$ $H_2 = h \sin \theta + s \cos \theta.$ P. Ko et al (2011)

- Dark matter productions are with two diagrams
 - There should be a richer phenomena with a Quantum Interference (can have a destructive interference in some regions)

Other "simple" scenarios

$$\bar{q} \longrightarrow \bar{\chi}$$

$$FFT: L_{int} = \frac{m_q}{M_*^3} \bar{q} q \bar{\chi} \chi$$

$$- \text{ from } L \ni \frac{y_u y_\chi}{\Lambda^3} \bar{Q}_L \tilde{H} u_R \bar{\chi} \chi + \frac{y_d y'_\chi}{\Lambda^3} \bar{Q}_L H d_R \bar{\chi} \chi$$

$$\text{ if we write down in the SM gauge invariant way}$$

$$\bar{q} \longrightarrow \bar{\chi}$$

$$S.M. \text{ (Scalar mediator, "dark Higgs" model):}$$

$$L_{int} = \left(\frac{m_q}{v_H} \sin \theta\right) S \bar{q} q + (\lambda \cos \theta) S \bar{\chi} \chi$$

• H.M. (SM Higgs mediator):

$$L_{\rm int} = \left(\frac{m_q}{v_H}\cos\theta\right) H_{\rm SM}\bar{q}q + \left(\lambda\sin\theta\right) H_{\rm SM}\bar{\chi}\chi$$

(1) Naive expectation @ LHC

(1) Naive expectation @ LHC

(2) Limiting case

Mono-X +MET

- P_t (or Energy) of j (ISR or mono-X) is proportional to the energy transfer $Q_{\rm tr}$.
- If $\hat{s} > m_{\text{mediator}}^2$, the energy transfer would be localized to the pole of the propagators.

Richer kinematics results at the LHC (Run 1)

• $2m_{\chi} < m_{H_{\rm SM}}$, energy transfer is localized around Higgs mass (pole of the propagator).

Richer kinematics results at the LHC (Run 1)

- To produce Dark matters, $\sqrt{\hat{s}} > 2m_{\chi} > m_{H_{\rm SM}}$ in this case. Thus, energy transfer is **not** localized to Higgs mass.
- So, if the LHC can reach the mass scale of dark Higgs, the H.P. case would be totally different from H.M. nor S.M.

Richer kinematics results at the LHC (Run 1)

• H.P. has an constructive interference effect compared to HM

Richer kinematics results at the LHC (Run 1) Mono-X + MET $m_{\nu} = 400 \, {\rm GeV}$ Effective Effective H.M. H.M. 45000 H.P. M_H=1TeV H.P. M_H=1TeV ---- H.P. M_H=5TeV H.P. M_H=5TeV 40000 S.M. M_H=1TeV S.M. M_ =1TeV S.M. Mu²=5TeV S.M. M. ^{*}=5TeV number of events/(50GeV) 35000 10-1 30000 25000 10⁻² 20000

- The energy transfer (or $\sqrt{\hat{s}}$) provides an effect to P_T of Mono-X.
 - @ LHC Run 1 (8TeV) analysis, the effect is milder (But, HL-LHC would have non-negligible differences)

Effect on the analysis (cut-eff)

• $\ln m_S < 2m_{\chi}$ region, $\sqrt{\hat{s}} \simeq 2m_{\chi}$, so that destructive interference as $\frac{1}{\hat{s} - m_{H_{\rm SM}}} - \frac{1}{\hat{s} - m_S^2} \simeq (+) - (+)$

Effect on the analysis (cut-eff)

• In $m_S > 2m_{\chi}$ region, $\sqrt{\hat{s}} < m_S$ for high m_S , so that constructive interference as $\frac{1}{\hat{s} - m_{H_{\rm SM}}} - \frac{1}{\hat{s} - m_S^2} \simeq \frac{1}{\hat{s}} + \frac{1}{m_S^2 - \hat{s}} \simeq (+) + (+)$

- In $m_S < 2m_{\chi}$ region, due to destructive interference in H.P. case, other scenarios (SM, EFT) have overestimated limit for the Dark physics scale.
- $\overline{\Lambda}_{dd}$ is the energy scale in the limiting case when $m_{H_{\text{Dark}}} \gg m_{H_{\text{SM}}}$ at the DD search of $\chi + q \rightarrow \chi + q$, so "effectively" Higgs mediator case.

• In $m_S > 2m_{\chi}$ region, due to constructive interference in H.P. case,

1) HM has an underestimated limit for Dark physics scale

2) SM and EFT have still overestimated limit for Dark physics scale

- Similar to Mono-jet + MET analysis, $t\bar{t}$ + MET analysis has a same tendency
 - Energy scale of DM production is related to the P_t of decaying products from top-quark.

In short, DM model with respecting the SM Gauge symmetry \rightarrow more structures

Recap

- If we want to capture Dark sector in a simplified model approach,
 We need to be careful not to destroy the beauty of the SM !
- Higgs portal dark matter scenario provides very interesting interference effects on the LHC analysis and it will be more interesting as LHC go to the HL region.
- In this short talk, I focused on s-channel mediator case.
 For t-channel, please check
 - P. Ko, Alexander Natale, Myeonghun Park and Hiroshi Yokoya (JHEP 01(2017) 086)

Back-up for $\bar{\Lambda}_{dd}$

Dark matter Direct search

