ATLAS Higgs to invisible: plans and summary

Diallo Boye

Roadmap of Dark Matter models for Run 3 (CERN)

May 14, 2024

Outline

1 Introduction

Higgs to invisible summary
VBF+MET
ZH+MET
tt+MET
VBF+MET + γ
jet+MET (Monojet)

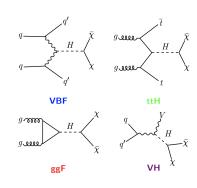
3 Plan for Run 3

The Higgs boson exists and then...

- The Higgs boson exists and it's discovered in 2012 → scrutinize its properties and the Higgs sector nature.
- Recent search set a 95% CL upper limit of 21% on the branching ratio for *H* boson decays via undetected modes.

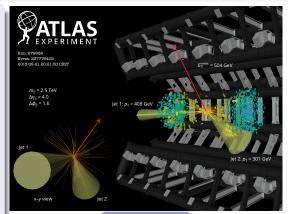
▶ arXiv:1909.02845

 $\Rightarrow \text{ Exotic decays of the} \\ \text{Higgs boson remain a} \\ \text{high priority.} \end{cases}$

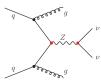

• Even with its excellent successes in providing experimental predictions, the SM leaves some phenomena unexplained.

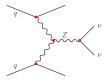
- hierarchy problem, baryon asymmetry, Dark Matter/energy etc...
- Many Beyond Standard Model (BSM) theories predict the Higgs as mediator between SM particles and dark matter • PhysRevD.82.055026, • doi.org/10.1016/, • Phys. Rev. Lett. 112, 201802

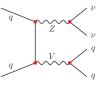
Higgs to invisible search at the LHC


• Invisible Higgs carries off momentum, characterised by large missing transverse momentum in the events

- Four different channels for the Higgs to invisible search
- Very unlikely process in Standard Model; branching ratio $\mathcal{B}_{H \to inv} \sim 1.05 \times 10^{-3}$ from $H \to ZZ^* \to 4\nu$
- Can be significantly enhanced in various BSM scenarios, including Higgs coupling to dark matter ("Higgs portal").




Vector Boson Fusion: VBF

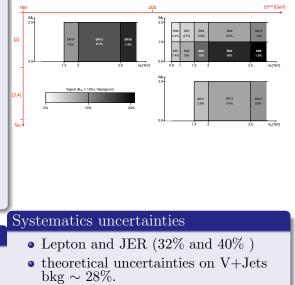

- Strong background rejection due to its distinct event topology.
- The most sensitive mode for invisible decays of a Higgs boson at hadron colliders
- Three mains backgrounds: Z strong, Z electroweak and di-boson production.

▶ arXiv:2202.07953

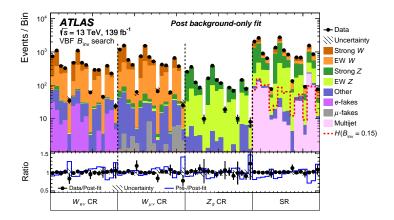
Diallo Boye Roadmap of Dark Matter models for Run 3

5 / 21

VBF search in ATLAS: Analysis strategy • arXiv:2202.07953

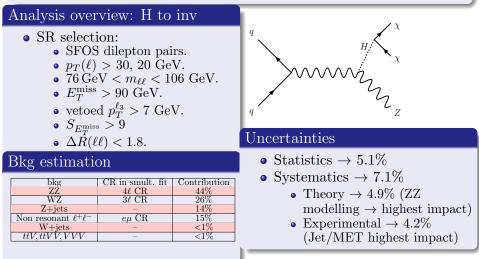

Event selection

- Two jets with $p_T(j_1/j_2) > 80/50$ GeV
- Small add. jet activity: $p_T(j_3) < 25$ GeV.
- Jets in opposite hemispheres.
- $\Delta \eta_{jj} > 3.8.$
- $m_{ii} > 0.8 \text{ TeV}$
- Veto on e and μ
- A 3D $m_{ii}, \Delta \phi_{ii}$ and N_{iets} binning used.

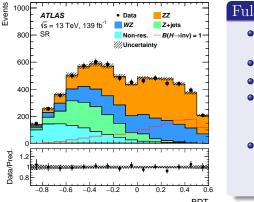

Bkg estimates

• The V+jets (95%bkgs) estimates by data-driven technique

VBF search in ATLAS: Results • arXiv:2202.07953



Process	SR	$Z_{\ell\ell}$ CR	$W_{e\nu}$ CR	$W_{\mu\nu}$ CR	Fake-e CR	Fake- μ CR	Pile-up CR
Total bkg.	14990 ± 2990	1880 ± 510	6210 ± 1260	9150 ± 1890	4560 ± 760	2110 ± 390	2030 ± 110
H (VBF)	886 ± 81						3.9 ± 1.3
H (ggF)	106 ± 41	Predicted signal for $B_{inv} = 15\%$ 1.0 ±				$1.0 \pm \frac{1.5}{1.0}$	
H(VH)	0.9 ± 0.2						-
Data	16 490	2051	6361	9294	4563	2110	2033


• CMS: Obs (Exp) $\mathcal{B}(\text{Hinv})$ < 0.18(0.12) @95%C.L • CMS

ZH + MET (arXiv:2111.08372)

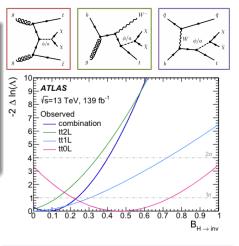
- The analysis considers 3 signal models with Z(ll)+MET final state:
 - Higgs invisible, vector/axial-vector simplified and 2HDM+a.

ZH + MET results • arXiv:2111.08372

Full Run2 results

- Fit SR and CRs simultaneously.
- BDT is used in SR and $e\mu$ CR.
- Use MET in 31 CR and 41 CR.
- Obs (Exp) $\mathcal{B}(\text{Hinv}) <$ 0.19(0.19) vs 0.29(0.25) for CMS @95%C.L • CMS
- Table below: Summary of SR and CRs yields after the simultaneous fit for the $ZH \rightarrow \ell\ell + \text{inv signal.}$

|--|


	SR	$e\mu$ CR	3ℓ CR	$4\ell CR$
Observed events	6382	891	11622	314
Expected yields after fit	6385 ± 81	895 ± 29	11620 ± 110	296 ± 11
$ZH \rightarrow \ell\ell + inv$	4 ± 110	-	-	-
$ZZ \rightarrow \ell \ell \nu \nu$	2681 ± 110	0.763 ± 0.064	2.61 ± 0.18	-
WZ	1595 ± 34	11.6 ± 1.1	10623 ± 150	-
Z + jets	1111 ± 100	0.79 ± 0.30	235 ± 89	-
Non-resonant	881 ± 39	876 ± 29	220 ± 31	-
$ZZ \rightarrow 4\ell$	85.8 ± 5.5	0.621 ± 0.056	443 ± 40	295 ± 11
$t\bar{t} + V$	12.7 ± 2.8	1.76 ± 0.41	53 ± 12	-
Triboson	13.0 ± 6.2	3.1 ± 1.4	44 ± 20	0.48 ± 0.23

$t\bar{t}$ +MET search • arXiv:2211.05426

3 analyses channels

- tt0L (tt0L-high and tt0L-low) \rightarrow no leptons
- $tt1L \rightarrow only 1$ lepton.
- tt2L \rightarrow only 2 leptons.
- Invisible Higgs decays
 - Special case: ttH(125)production ~ DM+tt, $m_{\phi} = 125 \text{ GeV}$

Analysis	Best fit $\mathcal{B}_{H o \mathrm{inv}}$	Observed upper limit	Expected upper limit
ttOL	$0.48^{+0.27}_{-0.27}$	0.95	$0.52^{+0.23}_{-0.16}$
tt1L	$-0.04^{+0.35}_{-0.29}$	0.74	$0.80\substack{+0.40 \\ -0.26}$
tt2L	$-0.08^{+0.20}_{-0.19}$	0.36	$0.40\substack{+0.18 \\ -0.12}$
$t\bar{t}H$ comb.	$0.08\substack{+0.15 \\ -0.15}$	0.38	$0.30\substack{+0.13 \\ -0.09}$

• Obs (Exp) 𝔅(Hinv) 0.38 (0.30) vs 0.51(0.53) for CMS @95%C.L ○CMS

VBF+MET+photon • arXiv:2109.00925

Event selection

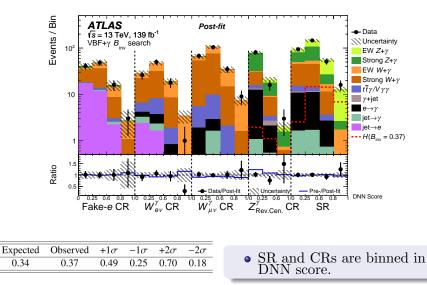
- $p_T(j_1/j_2) > 60/50$ GeV.
- $E_T^{\text{miss}} > 150 \text{ GeV}.$
- $\left|\Delta\phi(E_T^{\mathrm{miss}}-\gamma)\right| > 1.8$
- $|\Delta \phi(j_1, j_2)| < 2.5$
- $|\Delta \eta(j_1, j_2)| > 3.0$
- $m_{jj} > 0.25 \text{ TeV}$
- Veto on e and μ , $n_{\gamma} = 1$
- $p_T(\gamma) < 110 \text{ GeV}$
- $C_{\gamma}(C_3) < 0.4 (< 0.7)$
- $\left|\Delta\phi(j_i, E_T^{\text{miss}})\right| > 1.$
- DNN used in 4 regions

Bkg estimates

- CRs used to estimate the bkgs:
 - $W_{e\nu}^{\gamma}, W_{\mu\nu}^{\gamma}$, Fake-e, $Z_{\text{rev.cent.}}^{\gamma}$

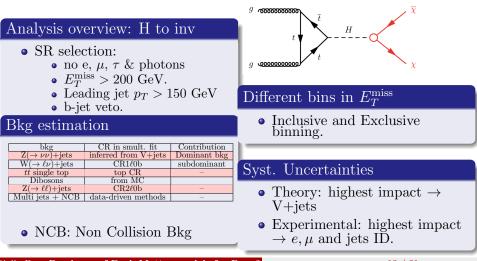
Diallo Boye Roadmap of Dark Matter models for Run 3

 $q \xrightarrow{q'}_{v \xrightarrow{V}} \overline{x} q \xrightarrow{q'}_{v \xrightarrow{V}} q'$ $q \xrightarrow{v'}_{v \xrightarrow{V}} \overline{x} q \xrightarrow{v'}_{v \xrightarrow{V}} q'$ $q \xrightarrow{v'}_{q'} \overline{x} q \xrightarrow{v'}_{q'} q'$ Figure 1: Signal


Figure 2: Dominant bkg

Uncertainties

- Data stats dominate.
- Followed by $V\gamma + jets$ theory


11 / 21

VBF+MET+photon results • arXiv:2109.00925

Monojet analysis • arXiv:2102.10874

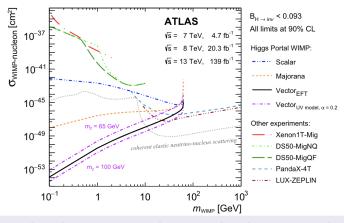
At least a high energetic jet & large E_T^{miss} and no leptons
Different interpretations including Higgs invisible.

$\mathrm{H} \to \mathrm{inv}$

- limits are calculated assuming SM production cross section of Higgs boson, combining all the production mechanism:
 - ggF ~ 54%, VBF ~ 34%, VH ~ 12%, ttH negligible
- Theoretical uncertainties evaluated following LHC Higgs working group:
 - Include PDF, scale variations, PS systematics, EWK corrections to VBF cross section
- Limit on $\mathcal{B}_{H \to \text{inv}} = 0.34(0.39^{+0.16}_{-0.11})$ obs. (exp.) @ 95% CL.

$H \rightarrow \text{inv combination} \bullet \text{arXiv:2301.10731}$

Analysis Best fit $\mathcal{B}_{H \to inv}$		Observed 95% U.L.	Expected 95% U.L.
$\text{Jet} + E_{\text{T}}^{\text{miss}}$	$-0.09^{+0.19}_{-0.20}$	0.329	$0.383^{+0.157}_{-0.107}$
$VBF + E_T^{miss} + \gamma$	$0.04^{+0.17}_{-0.15}$	0.375	$0.346^{+0.151}_{-0.097}$
$t\bar{t} + E_{\mathrm{T}}^{\mathrm{miss}}$	0.08 ± 0.15	0.376	$0.295^{+0.125}_{-0.083}$
$Z(\to \ell\ell) + E_{\rm T}^{\rm miss}$	0.00 ± 0.09	0.185	$0.185^{+0.078}_{-0.052}$
$VBF + E_T^{miss}$	0.05 ± 0.05	0.145	$0.103^{+0.041}_{-0.028}$
Run 2 Comb.	0.04 ± 0.04	0.113	$0.080^{+0.031}_{-0.022}$
Run 1 Comb.	$-0.02^{+0.14}_{-0.13}$	0.252	$0.265^{+0.105}_{-0.074}$
Run 1+2 Comb.	0.04 ± 0.04	0.107	$0.077^{+0.030}_{-0.022}$


• Statistical combination of $H \rightarrow \text{inv}$ with Run 2 data.

• Limit on $\mathcal{B}_{H \to \text{inv}} = 0.113(0.080^{+0.031}_{-0.022})$ obs. (exp.) @ 95% CL.

• Statistical combination of $H \rightarrow \text{inv}$ with Run 2 + Run 1 data.

• Limit on $\mathcal{B}_{H \to \text{inv}} = 0.107(0.077^{+0.030}_{-0.022})$ obs. (exp.) @ 95% CL.

$H \rightarrow \text{inv combination} \bullet \text{arXiv:2301.10731}$

• The combined Run 1+2 result is translated into upper limits on the WIMP-nucleon scattering cross-section for Higgs portal models. The derived limits on $\sigma_{WIMP-Nucleon}$ range down to 10^{-45} cm² (scalar), 2 × 10⁻⁴⁷ cm² (Majorana) and 10⁻⁵⁴ cm² (vector), highlighting the complementarity of DM searches at the LHC and direct detection experiments.

Run 3 plan for VBF analysis

New limit setting framework

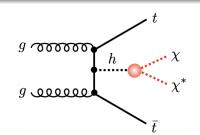
- Transitioning from Run2 framework (HistFitter + some Higgs group packages) to pyhf.
 - Pyhf uses lite .json file \rightarrow faster, flexible and more efficient.
 - \rightarrow Time improvement: $\mathcal{O}(50 \text{ hrs}) \rightarrow \mathcal{O}(2 \text{ hrs})$
- Previous results reproduced by Pyhf:

	Observed	Expected	+1σ	-1σ	+2σ	- 2σ
Published	0.145	0.103	0.144	0.075	0.196	0.055
Pyhf	0.146	0.105	0.146	0.077	0.197	0.059

• Next steps: integration into Run2+Run3 framework

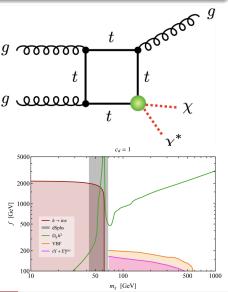
Low-level Calo ML	MVA/ML Implementation
• Developing a ML framework to leverage low-level calorimeter information.	• Developing TMVA Classification ML framework for signal/background separation

ZH + MET plan for Run 3


- New implementation of tau-veto in SR is envisaged to reduce the hadronic tau decay contamination.
 - This is expected to improve the limit significantly.
- The leading uncertainty is the ZZ modeling.
 - State-of-the-Art NNLO qq + NLO gg and uncertainties could be included to improve the prediction.
 - Improve the conservative EW correction uncertainty by event-weight based EW corrections in Sherpa 2.2.11+
- Z+jets (MC-template) and non-resonant (CR fitted simultaneously) used in this round.
 - Revisit the data-driven approach on non-resonant and V+jets processes which could benefit from the larger Run 3 dataset.
- A better modelling of W/Z+jets could improve the sensitivity.

tt
H, monojet, VBF+MET + γ plan for Run 3

- ttH: statistically limited \rightarrow will gain obviously in Run 3.
- An early care about the orthogonality between mono-jet and VBF+MET would help for an efficient remove of the overlap between these two analyses.
- VBF+MET+ γ will benefit from the statistics increase of Run 3 and also from the expected improvement of VBF+MET analysis.
- VH(had) was missed in the legacy combination, for Run 3 we should make sure to include it given the importance of this analysis.


Potential interpretation for Run 3 (2107.12389)

• Signal process is being studied by Run 3 searches

pNGB DM model

- Attractive DM candidates \rightarrow derivative Higgs portal, with extra pNGB scalar.
- Dominant interactions are with heavy particles.
 - VBF+MET, tt/tW+MET are important signatures.

20 / 21

Conclusion

- The ATLAS Higgs to invisible is reviewed by considering the most relevant channels.
- The limit on the branching ratio by combining Run 1 and Run 2 is $\mathcal{B}_{H\to inv} = 0.107(0.077^{+0.030}_{-0.022})$ obs. (exp.) @ 95% CL.
- Most channels that are statistically limited such as VBF+MET, monoZ, tt+MET and VBF+MET+photon will benefit from Run 3 iteration.
- Other channels like VBF+MET which already started the Run 3 analysis has clearer plan for Run 3 improvement.
- For the interpretation part, the pNGB DM model for the derivative Higgs portal will be an interesting model to test.
- Some dark photon searches carries out Higgs to invisible interpretation (see dark photon session on Wednesday).