# Searches for Higgs to invisible: status and plans

Andrea Malara

**On behalf of the CMS Collaboration** 

May 2024

LHC DM workshop 2024

ULB

Andrea Malara

May 2024

### **Theory motivation**



### Higgs to invisible

- ▶ Branching fraction (𝔅) in the SM ~  $\mathcal{O}(0.1\%)$
- Detectors resolution and available statistics at the LHC insufficient to probe it
- **BSM** scenarios predicts higher  $\mathscr{B}$ 
  - Portals models: mediators between SM and DM candidates
  - Dark photon, scalar mediators, Higgs portal, ...
- Focus of this talk:
  - Searches in CMS
  - **>** Upper limits on SM  $\mathscr{B}$
  - Higgs portal interpretations

### Main search channels

CMS of the second secon

- Vector Boson Fusion (VBF)
  - Primary sensitivity, background suppression with two tagging jets
- Higgs-Strahlung (VH or Mono-V)
  - Second leading channel, clean selection from vector boson identification
- top associated production (ttH)
  - Small cross-section, statistically limited
- gluon-gluon fusion (ggH or Monojet)
  - Large cross-section, but large QCD background







3

### **Overview of past CMS results**



4

CMS

### **VBF** channel

### Analysis in a nutshell

- Online selections
  - MET triggers (MTR) as the primary category
  - VBF trigger (VTR) selections as additional category
- Offline selections:
  - ▶ MET > 200 GeV
  - 2 well-separated forward jets
- Final discriminant:
  - ▶ forward jet invariant mass (m<sub>jj</sub>)
  - ▶ VBF production dominates at high  $m_{jj}$ ( ~ 50 % for  $m_{jj}$  > 3.5 TeV )
- Most sensitive production mode
  - Second highest cross section
  - Clean signature from 2 forward jets





#### LHC DM workshop 2024

### **VH** channel



### Different categories explored

 $\blacktriangleright Z \rightarrow \ell \ell$ 

- $\blacktriangleright Z \rightarrow qq$  merged
- $\blacktriangleright Z \rightarrow qq$  resolved

### Analysis in a nutshell

 $\blacktriangleright Z \rightarrow \ell \ell$ 

- ► Balance between MET and  $p_T(\ell \ell)$
- $\blacktriangleright Z \rightarrow qq$  merged:
  - V-tagging with ML
- $\blacktriangleright$  *Z*  $\rightarrow$  *qq* resolved:
  - ► Complementary to  $Z \rightarrow qq$  "merged" and ttH
- Final discriminant:



### ► MET

Andrea Malara

#### LHC DM workshop 2024

May 2024 6

# ttH channel



#### Different categories explored

- N. reconstructed top
- N. reconstructed W
- B-tag and jet multiplicity

### **Final discriminant**

MET

#### Analysis in a nutshell

- ttH (hadronic)
  - Challenging background
  - Optimised to balance event quality and signal purity
  - Orthogonality with other channels
- ttH (leptonic)
  - Re-interpretation from SUSY searches (1L and 2L)

| Category                  | Subcategory | n <sub>i</sub> | $n_{\rm b}$ | $n_{\rm t}$ | $n_{\rm W}$ |
|---------------------------|-------------|----------------|-------------|-------------|-------------|
| Boosted ttH               | 2Boosted1b  | $\geq 5$       | 1           |             | 2           |
|                           | 2Boosted2b  | $\geq 5$       | $\geq 2$    |             | 2           |
|                           | 1t1b        | $\geq 5$       | 1           | 1           | 0           |
|                           | 1t2b        | $\geq 5$       | $\geq 2$    | 1           | 0           |
|                           | 1W1b        | $\geq 5$       | 1           | 0           | 1           |
|                           | 1W2b        | $\geq 5$       | $\geq 2$    | 0           | 1           |
| Resolved t <del>ī</del> H | 5j1b        | 5              | 1           | 0           | 0           |
|                           | 6j1b        | $\geq 6$       | 1           | 0           | 0           |
|                           | 5j2b        | 5              | $\geq 2$    | 0           | 0           |
|                           | 6j2b        | $\geq 6$       | $\geq$ 2    | 0           | 0           |
| VH                        | 2j0b        | 2              | 0           | 0           | 0           |
|                           | 2j1b        | 2              | 1           | 0           | 0           |
|                           | 2i2b        | 2              | 2           | 0           | 0           |



Taken from here

Andrea Malara

LHC DM workshop 2024

rom here Hadronic recoil (Gev

May 2024

### Control regions (CR)

- Used for precise prediction of background processes in SR
  - ▶ Real MET contributions  $(Z \rightarrow \nu \nu)$
  - Fake MET due to lost leptons
- Constrain systematic uncertainties
  - Transfer factors
  - Data-driven estimations





### Control regions (CR)

- Used for precise prediction of background processes in SR
  - ▶ Real MET contributions  $(Z \rightarrow \nu \nu)$
  - ► Fake MET due to lost leptons
- Constrain systematic uncertainties
  - Transfer factors
  - Data-driven estimations

#### Hadronic recoil

- Equivalent to MET in Signal Region
- Good proxy of MET in Control Regions
  - **Defined as MET + lepton/photon**  $p_T$



CM

Primary sources of background

CM **ULB** Taken from here



**Andrea Malara** 

#### LHC DM workshop 2024

bkg.) / prediction

1 (

0.8

500

1000 1500 2000 2500 3000 3500 4000

**May 2024** 

1000 1500 2000 2500 3000 3500 4000

W(hv)+iets (VBF)

10<sup>3</sup>

10<sup>2</sup>

10

10

Data / prediction

500

4500 5000

m<sub>ii</sub> (GeV)

Other EW

QCD multijet Total bkg. (S+B fit) ±

aaH+VH+ttH

 $B(H \rightarrow inv) = 0.07$ 

Events / 1500 GeV

-Fitted (S+B)/B

10

4500 5000

m<sub>ii</sub> (GeV)

#### Primary sources of background

- Real MET contributions  $(Z \rightarrow \nu \nu)$ 
  - Constrained from dilepton and single photon CRs
- Fake MET due to lost leptons ( $t\bar{t}$  events, W + jets)
  - Constrained from single lepton CR

#### Other sources of background

- Jets miscalibration and detector noise
  - QCD multijet events
  - Data-driven estimation
- Minor contributions
  - Taken from simulation



#### Andrea Malara

#### LHC DM workshop 2024

### Strategy

- Total or partial cancellations, thanks to transfer factors and control region
  - Cancel only when the same source is present in two control regions

#### Leading sources of uncertainties

- Statistical precision
  - $\blacktriangleright~\sim 30\,\%$  in VBF cat.
  - Dominant source in ttH
  - Photon identification
    - $\blacktriangleright$  Up to  $\sim 10\,\%\,$  due to limited statistics
- Jet energy scale/resolution
  - $\blacktriangleright$  partially cancel, up to  $\sim 10\,\%$
- Top/V/b-tagging
  - ▶ mostly in the ttH cat.  $\sim 5 20\%$
- Theory  $\sim 10 20\%$





#### Sensitivity per channel

#### Statistically dominated:

- Combination with previous results significantly improves expected limits
- Additional categories improve the sensitivity



LHC DM workshop 2024

 $\sigma \times B(H \rightarrow inv)/\sigma_{SM}$ 

95% CL upper limit on



#### Sensitivity per channel

- Statistically dominated:
  - Combination with previous results significantly improves expected limits
  - Additional categories improve the sensitivity
- ttH (hadronic) and VH (resolved)
  - similar sensitivity



#### Sensitivity per channel

- Statistically dominated:
  - Combination with previous results significantly improves expected limits
  - Additional categories improve the sensitivity
- ttH (hadronic) and VH (resolved)
  - similar sensitivity
- Mono-V (VH boosted) and Monojet (ggH)
  - $\blacktriangleright$  Combination improves by  $\sim 20\%$



CMS

**ULB** 

LHC DM workshop 2024

May 2024

### 

#### Sensitivity per channel

- Statistically dominated:
  - Combination with previous results significantly improves expected limits
  - Additional categories improve the sensitivity
- ttH (hadronic) and VH (resolved)
  - similar sensitivity
- Mono-V (VH boosted) and Monojet (ggH)
  - $\blacktriangleright$  Combination improves by  $\sim 20\%$
- VBF channels lead the sensitivity
  - $\blacktriangleright$  Combination improves by  $\sim 20\%$





#### Sensitivity per channel

- Statistically dominated:
  - Combination with previous results significantly improves expected limits
  - Additional categories improve the sensitivity
- ttH (hadronic) and VH (resolved)
  - similar sensitivity
- Mono-V (VH boosted) and Monojet (ggH)
  - $\blacktriangleright$  Combination improves by  $\sim 20\%$
- VBF channels lead the sensitivity
  - $\blacktriangleright$  Combination improves by  $\sim 20\%$
  - $\blacktriangleright$  VTR improves by ~ 5 10 % wrt MTR-only

|   | Taker                 | Taken from here LIST OT All results                                                   |                    |                                          |                                                       |  |  |
|---|-----------------------|---------------------------------------------------------------------------------------|--------------------|------------------------------------------|-------------------------------------------------------|--|--|
|   | Analysis tag          | Production m                                                                          | node In<br>7 TeV   | tegrated lui<br>8 TeV                    | luminosity (fb <sup>-1</sup> )<br>13 TeV (Run 2)      |  |  |
|   | VBF-tagged            | VBF                                                                                   | _                  | 19.2 [91]                                | 140 [30][36]                                          |  |  |
| 1 | VH-tagged             | $\begin{array}{l} Z(\ell\ell)H\\ Z(b\overline{b})H\\ V(jj)H\\ Boosted VH \end{array}$ | 4.9 [91]<br>—<br>— | 19.7 [91]<br>18.9 [91]<br>19.7 [92]<br>— | 140 [30][34]<br>—<br>140 [30][this paper]<br>138 [35] |  |  |
| ľ | tīH-tagged            | tīH (hadronie<br>tīH (leptonic                                                        | c) —<br>) —        | _                                        | 138 [this paper]<br>138 [31, 32]                      |  |  |
|   | ggH-tagged            | ggH                                                                                   | _                  | 1 <b>9.7 [92]</b>                        | 140 [30][35]                                          |  |  |
| - | Category<br>2012–2016 | C                                                                                     | Observed<br>0.33   | Medi                                     | Taken from here<br>an expected<br>0.21                |  |  |
|   | VTR 2017              |                                                                                       | 0.57               |                                          | 0.45                                                  |  |  |
|   | VTR 2018              |                                                                                       | 0.44               |                                          | 0.34                                                  |  |  |
|   | VTR 2017+             | -2018                                                                                 | 0.40               |                                          | 0.28                                                  |  |  |
| 4 | MTR 2017              |                                                                                       | 0.25               |                                          | 0.19                                                  |  |  |
|   | MTR 2018              | 0010                                                                                  | 0.24               | 1                                        | 0.15                                                  |  |  |
|   | MTR 2017-             | +2018                                                                                 | 0.17               |                                          | 0.13                                                  |  |  |
|   | all 2017              |                                                                                       | 0.24               |                                          | 0.18                                                  |  |  |
|   | all 2018              |                                                                                       | 0.25               |                                          | 0.15                                                  |  |  |
|   | all 2017+20           | 018                                                                                   | 0.18               |                                          | 0.12                                                  |  |  |
|   | 2012–2018             |                                                                                       | 0.18               |                                          | 0.10                                                  |  |  |

#### Sensitivity per channel

- Statistically dominated:
  - Combination with previous results significantly improves expected limits
  - Additional categories improve the sensitivity
- ttH (hadronic) and VH (resolved)
  - similar sensitivity
- Mono-V (VH boosted) and Monojet (ggH)
  - $\blacktriangleright$  Combination improves by  $\sim 20\%$
- VBF channels lead the sensitivity
  - $\blacktriangleright$  Combination improves by  $\sim 20\%$
  - ▶ VTR improves by  $\sim 5 10\%$  wrt MTR-only



Scan for  $\kappa_V$  and  $\kappa_F$ 

| Taken from here List of all results |                 |                                     |           |                |  |  |  |
|-------------------------------------|-----------------|-------------------------------------|-----------|----------------|--|--|--|
| Analysis tag                        | Production mode | Integrated luminosity (fb $^{-1}$ ) |           |                |  |  |  |
|                                     |                 | 7 TeV                               | 8 TeV     | 13 TeV (Run 2  |  |  |  |
|                                     | TADE            |                                     | 10 0 [01] | 4 40 500150 (1 |  |  |  |

CM

**ULB** 





### **Dark matter interpretations**

#### Higgs-portal models

- Stable dark matter candidates couple to Higgs
  - Assume  $m_{DM} < \frac{m_H}{2}$
  - EFT approach for DM-nucleon interaction
  - $\blacktriangleright$  Upper limits on elastic scattering  $\sigma$
- Orthogonal phase-space wrt direct detection experiments
  - Strongest constraints for masses  $< 10 \ GeV$





### **Dark matter interpretations**

#### Higgs-portal models



Assume  $m_{DM} < \frac{m_H}{2}$ 

- EFT approach for DM-nucleon interaction
- $\blacktriangleright$  Upper limits on elastic scattering  $\sigma$
- Orthogonal phase-space wrt direct detection experiments
  - Strongest constraints for masses  $< 10 \ GeV$

#### Spin-1 mediator

- Exclusion limits on the couplings and masses
- Considered only for mono+X searches



CM.

**ULB** 

### **Summary and Outlook**

Taken from here

- Wide spectrum of searches for Higgs to invisible
  - Complementary phase-space, production modes and final states investigated
- Constraints on SM Higgs boson properties:
  - ▶ Upper limit on  $\mathscr{B}(H \rightarrow inv) < 0.15 (0.08)$
- Reinterpretation for DM candidates:
  - Orthogonal sensitivity wrt to direct detection experiments
  - Powerful constraints at low masses
- Stay tune for more results:
  - … new Run3 data
  - … new techniques
  - … reduction of systematics





#### LHC DM workshop 2024

### **Summary and Outlook**

Taken from here

- Wide spectrum of searches for Higgs to invisible
  - Complementary phase-space, production modes and final states investigated
- Constraints on SM Higgs boson properties:
  - ▶ Upper limit on  $\mathscr{B}(H \rightarrow inv) < 0.15 (0.08)$
- Reinterpretation for DM candidates:
  - Orthogonal sensitivity wrt to direct detection experiments
  - Powerful constraints at low masses
- Stay tune for more results:
  - … new Run3 data
  - … new techniques
  - ... reduction of systematics

### Thank you for your attention! LHC DM workshop 2024

Andrea Malara







22