

ATLAS & CMS LEGACY **S-CHANNEL RESULTS**

M. Bauce Roadmap to DM Models for Run 3, May 13-17 2024

& CMS Legacy s-channel results - Roadmap of DM Models for Run 3 AS M. Bauce - AT

& CMS Legacy s-channel results - Roadmap of DM Models for Run 3 AS M. Bauce - AT

s-channel results - Roadmap of DM Models for Run 3 **CMS Legacy** ∞ AS - AT M. Bauce

DARK MATTER SIMPLIFIED MODELS

- Among DM-related models, these are the simplest SM extension
- Foreseen the existence of a single mediator and a DM particle χ
- The mediator connects SM and DM particles different decays allowed, different signatures
- 's-channel' refers to a specific mediator decay to DM candidate
- These models are non-renormalizable, though useful for the limited number of parameters
- More complex models can produce similar signatures to the simplified ones for specific parameter choices

g is combined with corresponding Yukawa factor to determine mediator's coupling to each particle

Bun DM Models for J O Roadmap -channel results S AS & CMS Legacy - AT M. Bauce

(m)

AS & CMS Legacy s-channel results - Roadmap of DM Models for Run 3 A M. Bauce

M. Bauce - ATLAS & CMS Legacy s-channel results - Roadmap of DM Models for Run 3

TT+ DARK MATTER SEARCH

CONSTRAINTS ON PSEUDOSCALAR MEDIATOR

9

$$\langle \sigma v_{rel} \rangle_g = \frac{\alpha_s^2}{2\pi^3 v^2} \frac{g_q^2 g_\chi^2}{(m_{Med}^2 - 4m_\chi^2)^2 + m_{Med}^2 \Gamma_{Med}^2} \cdot \sum_q m_q^2 f_{PS} \left(\frac{m_q^2}{m_q^2}\right) \frac{g_q^2 g_\chi^2}{(m_{Med}^2 - 4m_\chi^2)^2 + m_{Med}^2 \Gamma_{Med}^2} \cdot \sum_q m_q^2 f_{PS} \left(\frac{m_q^2}{m_q^2}\right) \frac{g_q^2 g_\chi^2}{(m_{Med}^2 - 4m_\chi^2)^2 + m_{Med}^2 \Gamma_{Med}^2} \cdot \sum_q m_q^2 f_{PS} \left(\frac{m_q^2}{m_q^2}\right) \frac{g_q^2 g_\chi^2}{(m_q^2 - 4m_\chi^2)^2 + m_{Med}^2 \Gamma_{Med}^2} \cdot \sum_q m_q^2 f_{PS} \left(\frac{m_q^2}{m_q^2}\right) \frac{g_q^2 g_\chi^2}{(m_q^2 - 4m_\chi^2)^2 + m_{Med}^2 \Gamma_{Med}^2} \cdot \sum_q m_q^2 f_{PS} \left(\frac{m_q^2}{m_q^2}\right) \frac{g_q^2 g_\chi^2}{(m_q^2 - 4m_\chi^2)^2 + m_{Med}^2 \Gamma_{Med}^2} \cdot \sum_q m_q^2 f_{PS} \left(\frac{m_q^2}{m_q^2}\right) \frac{g_q^2 g_\chi^2}{(m_q^2 - 4m_\chi^2)^2 + m_{Med}^2 \Gamma_{Med}^2} \cdot \sum_q m_q^2 f_{PS} \left(\frac{m_q^2}{m_q^2}\right) \frac{g_q^2 g_\chi^2}{(m_q^2 - 4m_\chi^2)^2 + m_{Med}^2 \Gamma_{Med}^2} \cdot \sum_q m_q^2 f_{PS} \left(\frac{m_q^2}{m_q^2}\right) \frac{g_q^2 g_\chi^2}{(m_q^2 - 4m_\chi^2)^2 + m_{Med}^2 \Gamma_{Med}^2} \cdot \sum_q m_q^2 f_{PS} \left(\frac{m_q^2}{m_q^2}\right) \frac{g_q^2 g_\chi^2}{(m_q^2 - 4m_\chi^2)^2 + m_{Med}^2 \Gamma_{Med}^2} \cdot \sum_q m_q^2 f_{PS} \left(\frac{m_q^2}{m_q^2}\right) \frac{g_q^2 g_\chi^2}{(m_q^2 - 4m_\chi^2)^2 + m_{Med}^2 \Gamma_{Med}^2} \cdot \sum_q m_q^2 f_{PS} \left(\frac{m_q^2}{m_q^2}\right) \frac{g_q^2 g_\chi^2}{(m_q^2 - 4m_\chi^2)^2 + m_{Med}^2 \Gamma_{Med}^2} \cdot \sum_q m_q^2 f_{PS} \left(\frac{m_q^2}{m_q^2}\right) \frac{g_q^2 g_\chi^2}{(m_q^2 - 4m_\chi^2)^2 + m_{Med}^2 \Gamma_{Med}^2} \cdot \sum_q m_q^2 f_{PS} \left(\frac{m_q^2}{m_q^2}\right) \frac{g_q^2 g_\chi^2}{(m_q^2 - 4m_\chi^2)^2 + m_{Med}^2 \Gamma_{Med}^2} \cdot \sum_q m_q^2 f_{PS} \left(\frac{m_q^2}{m_q^2}\right) \frac{g_q^2 g_\chi^2}{(m_q^2 - 4m_\chi^2)^2 + m_{Med}^2 \Gamma_{Med}^2} \cdot \sum_q m_q^2 f_{PS} \left(\frac{m_q^2}{m_q^2}\right) \frac{g_q^2 g_\chi^2}{(m_q^2 - 4m_\chi^2)^2 + m_{Med}^2 \Gamma_{Med}^2} \cdot \sum_q m_q^2 f_{PS} \left(\frac{m_q^2}{m_q^2}\right) \frac{g_q^2 g_\chi^2}{(m_q^2 - 4m_\chi^2)^2 + m_{Med}^2 \Gamma_{Med}^2} \cdot \sum_q m_q^2 f_{PS} \left(\frac{m_q^2}{m_q^2}\right) \frac{g_q^2 g_\chi^2}{(m_q^2 - 4m_\chi^2)^2 + m_{Med}^2 \Gamma_{Med}^2} \cdot \sum_q m_q^2 F_{ME}^2} \cdot \sum_q m_q^2 F_{ME}^2 \cdot \sum_q m_q^2 F_{ME}^2 \cdot \sum_q m_q^2 F_{ME}^2} \cdot \sum_q m_q^2 F_{ME}^2 \cdot \sum_q m_q^2 \cdot \sum_q m_q^2 \cdot \sum_q m$$

[AXIAL_]VECTOR - SIGNATURE COMPLEMENTARITY

M. Bauce - ATLAS & CMS Legacy s-channel results - Roadmap of DM Models for Run 3

 \mathbb{O} - Roadmap of DM Models for Run s-channel results **CMS** Legacy ∞ AS A 1 M. Bauce

95% CL upper limit

 \mathfrak{O}

of DM Models for Run

- Roadmap

-channel results

ဟ

Legacy

CMS

 ∞

S

A

1

M. Bauce

 \mathbb{O} for Run Models \geq Q Roadmap T results channel S egac CMS ∞ ഗ A 1 M. Bauce

the monojets

JHEP 11 (2021) 153

AS & CMS Legacy s-channel results - Roadmap of DM Models for Run 3 M. Bauce - AT

the monojets

<u>ص</u> 0.6

(Data-Pr

400

600

800

1000

red.)

1200 1400

 p_{T}^{miss} (GeV)

95% CL exclusion contours

OUPLINGS Ú **MEDIATOR Z**O S **TRAINT** <u>SNO</u>

 \mathfrak{O}

- Roadmap of DM Models for Run

s-channel results

CMS Legacy

 ∞

AS

A

1

M. Bauce

OUPLINGS Ú **MEDIATOR** Z S ANT **A** SNO

 \mathfrak{O} of DM Models for Run Roadmap Т s-channel results Legacy CMS ∞ S A 1 M. Bauce

SOUPLINGS Ŭ **MEDIATOR V**O *IRAINTS* <u>SNO</u>

Dilepton Expected Dilepton Observed 139 fb⁻¹

15

 \mathfrak{O} Roadmap of DM Models for Run results s-channel **CMS** Legacy ∞ AS - AT M. Bauce

ORATION EXPL ANE d S S S S

during the LHC Run 2 a large range of the m_{χ} - m_{Med} plane has been explored

2000 г m_{DM} [GeV] 1800 1600 🗕 1400 mass 1200 Dark matter 1000 800 600 400 200 🛏

 \mathbb{C} of DM Models for Run - Roadmap s-channel results Legacy CMS ∞ AS A 11 Bauce Ś

ORATION dX ШZ D S S S S

က Bun for **DM Models** J O Roadmap results channe S. -egacy CMS ∞ A M. Bauce

 \mathcal{O} - Roadmap of DM Models for Run s-channel results **CMS Legacy** ∞ AS A Т M. Bauce

COMPARISON ETECTION DRE

CONCLUSIONS

- Still a lot of things to understand about Dark Matter, unfortunately still unobserved at colliders
- Simplified models have been guiding us during the LHC Run 2
- Difficult to span the entire range of parameters, but we did out best
- Effort in place to make ATLAS and CMS constraints easy to reinterpret
- Maybe the LHC Run 3 can bring some good news on this topic

You never know what you might need

0	1
2	