
Running Julia AGC on coffea.af@uchicago
Dec, 2023

Jerry Ling (Harvard University / ATLAS Experiment)

Pointers

- Talk by Atell-Yehor Krasnopolski

- Atell developed most of the code as a IRIS-HEP 2023 Fellow

- Atell was supervised by Alex Held and I

2

https://indico.cern.ch/event/1292759/contributions/5613055/attachments/2748128/4782530/juliaHEP-AGC-2023.pdf

Step 0: Get Julia

General comment: Similar to Rustup, juliaup is the preferred way to manage Julia binary

(when it doesn’t come as part of the environment). It ensures official binary & serves as

version multiplexer. CERN LCG is another option, when cvmfs is available.

AF@UChicago specific:

~$ mamba install juliaup

3

https://github.com/JuliaLang/juliaup
https://lcginfo.cern.ch/pkg/julia/

Optional Step 0.5: Set up Jupyter

General comment: The IJulia.jl package can re-use existing Jupyter(lab) instance by

adding a kernel spec, or it will download its own Jupyterlab for you.

AF@UChicago specific:

4

Step 1: Set up Julia AGC

General comment: One can either `add` or `dev` from the Github url. Or clone first and do it

locally. We anticipate many hotfixes needed, so we will just `dev` it.

AF@UChicago specific:

❖ Manifest.toml records exact deps

❖ If we need to fix things, we can

`]dev …` from here to update dependency

5

https://github.com/Moelf/LHC_AGC.jl/blob/master/Manifest.toml

Outline for Step 2+

We encountered a few problems with the current coffea.af@uchicago setup, some problems

have workaround, some are actually “blocking” right now.

I will first briefly describe how Julia’s built-in Distributed.jl communication model and

quickly introduce the ClusterMannagers.jl package, which is a thin wrapper to

facilitate main-worker communication on various HPC scheduler.

Then I will describe the assumptions CM.jl makes for a HTCondor, some workaround, and

why it doesn’t work all the way. Finally, I will side step the “broken” steps by using login

nodes on af@uchicago.

6

https://github.com/JuliaParallel/ClusterManagers.jl

Distributed.jl and ClusterManagers.jl

General comment: Julia has memory-shared multi-threading. Distributed.jl, on the other

hand, is a standard library for supporting multi-processing (both local and remote

processes). These worker processes can communicate with the main process in various

ways, including local FIFO file, SSH/Sockets, telnet etc. The ClusterManagers.jl is a thin

wrapper to facilitate spawning and connecting remote worker process back to main

process, on various HPC scheduler (qsub, htcondor, slurm etc.)

Of course, if you’re real HPC, you probably want to use MPI.jl directly.

7

https://docs.julialang.org/en/v1/manual/multi-threading/
https://docs.julialang.org/en/v1/manual/distributed-computing/
https://github.com/JuliaParallel/ClusterManagers.jl
https://github.com/JuliaParallel/MPI.jl

State of ClusterManagers.jl

General comment: Basically, think of CM.jl as a tiny subset of Dask, its sole purpose is to

provide a ~uniform interface to spawn remote process and connect back to main process,

nothing else. It is also undermaintained – it’s hard to “integration test” a dozen of different

HPC setup, especially given no two HTCondor setups are identical.

Historically, HEP people have contributed to various fixes on HPC setup they happen to use

(#184, #160, #157). But it’s nowhere near the robustness Dask has and has ~0 dedicated

resource.

8

https://github.com/JuliaParallel/ClusterManagers.jl/pull/184
https://github.com/JuliaParallel/ClusterManagers.jl/pull/160
https://github.com/JuliaParallel/ClusterManagers.jl/pull/157

Communication model of ClusterManagers.jl

Specifically to HTCondor, it will

generate `.sh` and `.sub` files according

to your Julia environment and user

provided options.

Here comes the assumptions this

package currently make, for

HTCondor setup.

9

Communication model of ClusterManagers.jl

Assumption: The same Julia

executable is accessible from worker

nodes.

❌; the workaround is to create a

mirror `.juliaup` setup in `/data/jiling`. A

follow-up problem is now remote Julia

worker, each needs to JIT to a

different location.

10

Communication model of ClusterManagers.jl

Assumption: The directory job

submitted from can be `cd` to from

remote worker.

❌; similar to first assumption, the

workaround is to inject

`initialdir=/data/jiling/` into the `.sub`

file.

11

Assumption: `transfer_input_files`

functions.

Currently, does not work our particular

HTCondor system. Expected to be

fixed soon.

Communication model of ClusterManagers.jl

12

Communication model of ClusterManagers.jl

The next step in a “normal” workflow

is for worker processes to connect

back to the main node.

This communication can happen in

one of many ways. HTCondor setup

uses telnet, which isn’t ideal, it also

expects some port to open, which

may not be the case.

13

Communication model of ClusterManagers.jl

The last step in a normal workflow is

just when main node takes over and

can perform code loading and spawn

tasks on them.

14

“Normal” Step 2

Because submitting from coffea.casa is broken, we demonstrate normal workflow from login

nodes:

15

Step 3: Prepare tasks

Like many HEP analyses, AGC is naively parallelizable, and an obvious way to partition the

tasks is using the combination of <process>-<file path>-<variation>.

16

Step 4: Parallel map-reduce

Given the collection of tasks (over all process, files, variations), we simply want to run all of

them. `pmap` is built-in and will use all processes. For real application, you probably want to:

❖ Use `Parallelism.robust_pmap()` to guard against worker nodes dying

❖ Add progress bar / logging

17

Step 5: Merge

Conceptually, each “task” will return a collection of histograms, keyed by

<process>_<signal region>_<variation>

The “merging” rules of these dictionaries are captured nicely by (as long as + is defined for

histograms):

18

Step 6: Form “workspace” and inference

Currently, hard-coded, dumps the dictionary of histograms to a pyhf-compatible JSON.

19

Interactive distributed analysis

❖ Embarrassingly parallel workload scales nicely

❖ AF UChicago has 25 physical nodes, fall off when network/storage bottle necked.

20

Backup

21

Backup

22

Interactive distributed analysis

End users’ partial wish list for running analysis
on cluster:

❖ Smooth local session -> cluster

❖ No wait for compilation

❖ Revise code without re-submitting

23

Interactive distributed analysis

End users’ partial wish list for running analysis
on cluster:

❖ Smooth local session -> cluster

❖ No wait for compilation

❖ Revise code without re-submitting

24

Interactive distributed analysis

End users’ partial wish list for running analysis
on cluster:

❖ Smooth local session -> cluster

❖ No wait for compilation

❖ Revise code without re-submitting

25

Interactive distributed analysis

End users’ partial wish list for running analysis
on cluster:

❖ Smooth local session -> cluster

❖ No wait for compilation

❖ Revise code without re-submitting

26

Modified code re-compiled

