PhD Summer School Seminar – 25/10/2023

Deep Learning for Microscopy Image Analysis

Human Technopole - Workshop

Davide Panzeri - Physics Department University of Milano - Bicocca

Fluorescence Overview

Fluorescence Overview

- Fluorescence:
 - Fast process (ns)
 - UV-VIS(-IR) Excitation
 - VIS Emission
- Fluorophores:
 - Moieties which can fluoresce
 - Direct Dyes
 - Labelled Antibodies
 - Nanoparticles
 - ...

Fluorescence Microscopy

Pros:

- Sufficient Time Resolution
- High Spatial Resolution
- 3D Reconstruction

Cons:

- Achievable fluorophore density
- Bleaching
- Photo-toxicity

Fluorescence Microscopy

Dependance on:

- Photon Budget
- Sample Health

Final SNR of the Image

High SNR

- = Good Quality
- = Easier Processing

= Happy Scientist

Microscopy Setup

Deep Learning in Microscopy

Restoration

image \rightarrow image

Segmentation image \rightarrow objects

Quantification

 $objects \rightarrow features$

ID	Area	Туре	•••
1	56.3	A	
2	26.7	В	
3	44.1	В	

Image Restoration – Old Style

Theoretical Model of Image Formation = Deconvolution

- Computationally expensive
- Assumptions required for regularization
- Hard to adapt to custom setups
- Hard to control experimental conditions
- Noise is hard to model!

PSF = describes the optical response of the microscope during image formation

Examples of Inverse Filters	Examples of Iterative Algorithms	
Wiener Deconvolution	Richardson-Lucy	
Tikhonov Filtering	Jansson-Van Cittert	
Linear Least Squares	Landweber	
Naive Inverse Filtering	Nonlinear Tikhonov-Miller	

Image = Object * PSF + Noise

$$g=fst h=\int\limits_{-\infty}^{\infty}\int\limits_{-\infty}^{\infty}\int\limits_{-\infty}^{\infty}f(ec{x}')h(ec{x}-ec{x}')~d^{3}ec{x}$$

Image Restoration – DL

Data-Driven Approach:

- Computationally Expensive
- Adapts well to custom setups
- Adapts to different noise sources
- Involves Neural Networks

Prediction

Loss Function

"Clean" Ground Truth

CARE: content-aware image restoration

Supervised Approach: Requires Matching Image Pairs

CARE: content-aware image restoration

Dataset Generation:

- Supervised Approach
- Multiple Microscope Acquisitions
- Registration

High SNR:

- Longer Exposure Time
- Higher Light Intensity
- Slower Acquisition

Low SNR:

- Faster Exposure Time
- Less Light Intensity
- Faster Acquisition

SNR

CARE: content-aware image restoration

U-Net Architecture

Training:

- U-Net Architecture ~ 10⁶ parameters
- * 100 3D-stacks size $1024 \times 1024 \times 400 \sim 80$ GB
- 17000 patches 64 × 64 × 16
- NVIDIA GeForce GTX 1080
- MSE Loss + Adam Optimizer
- 4-5 hours of training

$$NRMSE = \frac{\sum (S_i - O_i)^2}{\sum O_i^2}$$
$$SSIM(\mathbf{x}, \mathbf{y}) = [l(\mathbf{x}, \mathbf{y})]^{\alpha} \cdot [c(\mathbf{x}, \mathbf{y})]^{\beta} \cdot [s(\mathbf{x}, \mathbf{y})]^{\gamma}$$

Some CARE Examples

Disadvantages of CARE

- Ground Truth (GT) MUST be obtainable!
 - Very Fast Cellular Processing...
 - Photo-stability of Sample...
 - Cryo-EM...

• Training data must sample ALL visual features of interest!

So... what do you do if you just have noisy images?

Noise2Void (N2V)

Self-Supervised Denoising through a blind-spot Convolutional Neural Network =

We can obtain denoised results without the need for paired images or ground truth!!!

How does the blind-spot work?

Blind-Spot

Noise2Void (N2V)

Noise2Void

Learning Denoising from Single Noisy Images

Alexander Krull, Tim-Oliver Buchholz, and Florian Jug

Limitations of N2V

Useful for Per-Pixel-Noise:

- Low light images
- Shot noise
- Readout noise

NOT Suitable for:

- Deconvolution
- Compression Artifacts
- Structured Noise

N2V tends to highlight the Checker-box pattern!!

N2V on MY images

3D-N2V model

- NVIDIA GeForce RTX 3090
- Multi-channel processing
- Patch-size = 64x64x8 pixels
- 200 epochs \sim 1-2 hours

Confocal:

- Green Auto-Fluorescence (Exc: 488 nm, Em: 500-550 nn)
- Red Drag-5 (Exc: 633 nm; Em: 645-720 nm)

TPE:

20 µm

- Green Auto-Fluorescence (Exc: 800 nm, Em: 535/50 nm)
- SHG + autofluorescence (Exc: 800 nm; Em: 400/40 nm)

TPE

Confocal

50 µm

20 µm

