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O U T L I N E

• Qubits and modern quantum processors towards fault-tolerance.

• Quantum gates and qubit control.

• Fault-tolerant quantum advantage.

• Adiabatic quantum computing and QAOAs.

• Classical Machine Learning.

• Variational algorithms

• Example: NISQ – Quantum Machine Learning.

• Boosting gradient descent with the Parameter-Shift rule.

• Machine Learning with kernel methods.

• Quantum Support Vector Machine.

• Conclusions and outlook.
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• Two-level quantum systems: 𝜓 = 𝛼 0 + 𝛽 1 .

• Quantum Computing fundamental unit of information.

• Quantum coherence allows to leverage the principles of 

Quantum Mechanics (superposition, entanglement) to 

achieve speedups in problem solving.

Bloch sphere parametrization
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Example: a n-qubit system has 2𝑛 eigenstates → 2𝑛 complex 

amplitudes. Hard to simulate classically for 𝑛 ⪞ 50 qubits.

Q U B I T S
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• Among many platforms, the superconducting (SC) qubit holds as one of 

the most prominent one for achieving fault-tolerant quantum processing 

units.

• SC qubits are anharmonic oscillators with multiple energy levels, in 

which we are able to isolate the first two.

• Several issues:

• Relaxation and dephasing.

• Cryogenic temperatures required (∼ 20 mK).

• Hard to achieve scalable architectures.

• Non-standard chip fabrication techniques required.

Q UA N T U M  H A R D WA R E
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Noise Intermediate Scale Quantum (NISQ) era:

Small/medium sized QPUs, significant error rate.
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• Multi-qubit states are governed by quantum gates.

• The most common are single-qubit (can be visualized on the 

Bloch sphere) and two-qubit gates.

• A sequence of quantum gates acting on an initial state 

implements a quantum algorithm, often indicated as quantum 

circuit.

Q UA N T U M  G A T E S

0 =
1
0

1 =
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1

Single qubit gates are SU(2) 

rotations:

Name Symbol Matrix rep. Action

Hadamard

Not

Pauli rotations Rotation along X, Y, Z axis on the Bloch Sphere

C-Not
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Q UA N T U M  C I R C U I T  E X A M P L E S

«Bell pairs»

Few gates can produce two-qubit, maximally

entangled states.

|𝜓0⟩ = 00

𝜓1 = 𝐻0|00⟩ = 𝐻 0 ) 0 =
1

2
|0 + |1⟩) |0⟩

𝜓2 = 𝐶𝑁𝑂𝑇 𝜓1 =
1

2
00 + |11⟩)

Entangling two qubits with a quantum gate set

Entanglement is what makes quantum advantage 

possible.

Otherwise, any quantum circuit would be easy to 

reproduce classically.
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• Goal: searching for an item in an unstructured database.

Given a set 𝑋 of 𝑁 elements and a boolean function 𝑓: 𝑋 → {0, 1}, finding 𝑥∗ ∈ 𝑋 such that 𝑓 𝑥∗ = 1. 

Let’s assume that only one 𝑥∗ exists and represent it with state 𝜔 , where all the other states are 

represented by |𝑠′⟩.

1. Apply a Hadamard gate to all the 𝑛 qubits: s =
𝐻𝑛 0 𝑛. s will be almost perpendicular to 𝜔 if 

the database is large enough.

A remarkable example of Quantum Advantage that will be achievable through fault-tolerant quantum 

computers.

G R O V E R  S E A R C H  I
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2. Apply an «oracle» operation 𝑈𝜔 which flips the 

amplitude sign associated with |𝜔⟩

3. Apply a «diffusion» operation 𝑈𝑠 = 2|𝑠⟩⟨𝑠| − 𝐼
which applies a reflection about the |𝑠⟩ state.

The probability of measuring the state |𝜔⟩ as a measurement 

outcome is now increased.

• Iterating step 2 and 3 → |𝜔⟩ becomes more and more likely.

G R O V E R  S E A R C H  I I
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The number of gates scales as 𝑶 𝑵 . 𝑈𝜔 «checks» all the items in the dataset simultaneously, thanks 

to superposition.

Classically, to find the solution in an unsorted database we need to check elements one by one until we 

find the correct one, i.e. the number of checks scales as 𝑶 𝑵 .

→ Quantum Advantage for database, SAT problems, solving sudokus, etc...

But it requires many qubit, and is not robust to errors.

G R O V E R  S E A R C H  I I I
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• Let’s consider hamiltonians 𝐻𝑆 and 𝐻𝐶, such that for 𝐻𝑆 it is 

simple to prepare the ground state, while for 𝐻𝐶 is 

complicated.

• Then we can consider the following time evolution:

• 𝐻
𝑡

𝑇
= 1 −

𝑡

𝑇
𝐻𝑆 +

𝑡

𝑇
𝐻𝐶 , where 𝑇 is the total evolution time.

• If 𝑇 is big enough, the qubit state initially prepares in the 

ground state for 𝐻𝑆 will evolve to stay in the ground state of 

𝐻
𝑡

𝑇
(adiabatic limit).

• At 𝑡 = 𝑇, we successfully prepared our qubits in the ground 

state of 𝐻𝐶.

A D I A B A T I C  Q UA N T U M  C O M P U T I N G
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A D I A B A T I C  Q C  I N  P R A C T I C E

• If we can encode the solution to a problem in 𝐻𝐶, adiabatic quantum computing will be a powerful 

tool. Luckily, it is possible to define 𝐻𝐶 to solve a some combinatorial problems and Ising models.

• Example: a chain of fermions and the interaction between their spins:

• 𝐻 = σ𝑖,𝑗 𝐽𝑖𝑗𝜎𝑖𝜎𝑗 where 𝐽𝑖𝑗 is the interaction between particle 𝑖 and 𝑗.

• Many combinatorial problems can be encoded using Ising models (1302.5843).

Problems:

• The quantum system must be extremely well 

isolated from the environment.

• 𝑇 can be very long.

• Very hard to run this on gate-based quantum 

computers.
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T R O T T E R I Z A T I O N

• A powerful tool for approximating hard-to-

compute Hamiltonian ground states.

• If 𝐻 = 𝐻𝐴 + 𝐻𝐵, then:

• 𝑒𝐻𝐴+𝐻𝐵 = lim
𝑛→∞

𝑒
𝐻𝐴
𝑛 + 𝑒

𝐻𝐵
𝑛

𝑛

• This can be interpreted as applying 𝐻𝐴 and 𝐻𝐵
for time intervals 

1

𝑛
alternatively. A classical 

analogy is representing a curve with 

piecewise approximations.
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Q UA N T U M  A P P R O X I M A T E  O P T I M I Z A T I O N  A L G O R I T H M

• We can put together the adiabatic computing idea and trotterization for designing a 

gate-based algorithm that solves combinatorial problems: QAOA.

• Idea: creating a state 𝛾, 𝛼 = 𝑈 𝐻𝐵 , 𝛼𝑝 𝑈 𝐻𝐶 , 𝛾𝑝 …𝑈 𝐻𝐵 , 𝛼1 𝑈 𝐻𝐶 , 𝛾1 𝑠

• Where the 𝑈 are the unitary evolution operators corresponding to the Hamiltonian 

𝐻 for time 𝛼 or 𝛾.

• This can mimic the adiabatic evolution of a state from being the ground state of 𝐻𝐵
to being the ground state of 𝐻𝐶, but 𝛼s and 𝛾s must be appropriately tuned for 

that.

• 𝐻𝐶, the «cost» hamiltonian that we want to found the ground state of.

• 𝐻𝐵 must be a simple Hamiltonian, e.g. σ𝑖 𝜎𝑖
𝑥, that does not commute with 𝐻𝐶 . 𝐻𝐵

helps us to not get stucked in eigenstates of 𝐻𝐶.

How can we tune the time-steps 𝜶 and 𝜸?
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• A prominent approach to quantum algorithms, typically robust to errors and suitable for 

NISQ devices.

• General idea: parametrizing quantum gates, allowing us to:

• Minimize complicated cost functions

• Quantum Neural Networks, Quantum Eigensolvers, ...

• Encode classical data in large Hilbert spaces:

• Amplitude/angle embedding, Quantum Kernels, ...

→ NISQ-era devices allow to implement Quantum 

Machine Learning 

N I S Q - E R A  PA R A M E T R I C  Q UA N T U M  C I R C U I T S
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Q UA N T U M  M A C H I N E  L E A R N I N G

A vast research field in rapid expansion.

Tipically divided into four cathegories:

• Classical, or quantum-inspired classical models for 

analysing classical data.

• Quantum models for analysing classical data
• New approaches for data analysis in physics

• Classical, or quantum-inspired classical models for 

analysing quantum data.

• Quantum models for analysing quantum data
• May prove to be useful in quantum sensing.
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D I G R E S S I O N :  M A C H I N E  L E A R N I N G

Resolving problems without explicit programming through data-oriented approaches.

A very typical approach is to give a 

model many degrees of freedom, and 

looking for the best way to fix their 

values, i.e. Trying to minimize a cost 

function, which is related to how well 

a model solves the problem.

In a neural network, such degrees of 

freedom are the weights that connect 

the neurons trough different layers.

Minimization occurs though stochastic 

gradient descent.
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Recipee:

1. Encoding data in a quantum Hilbert space.

2. Weighted gates (quantum layers).

3. Output retrieved by running the circuit many times and averaging

4. Updating the weights via classical or quantum method.

Q UA N T U M  N E U R A L  N E T W O R K S

Sometimes, classical NN 

layers may be useful (hybrid 

QNNs) for dimensionality 

reductions.

Quantum layers topology 

might be inspired by the 

physics of the process, or 

enforce particular rules for 

the system.

(or quantum)
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Finding the global minimum of a QNN loss function is nontrivial:

• Complicated landscapes with many local minima.

• Occurrence of barren plateaus when increasing the number of qubits.

• Noise of quantum device and statistical fluctuations from repeating the 

measurements.

Possible approaches:

• Classical evaluation of stochastic gradient descent through finite 

difference

• Quantum evaluation of stochastic gradient descent through finite 

difference

• Quantum evaluation of stochastic gradient descent through exact 

gradient evaluation through the Parameter-shift rule.

Q N N  L E A R N I N G  M E T H O D S

Barren plateau example

Hard to minimize cost funciton
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• Way more efficient than quantum finite difference method when minimizing cost functions in QNN.

• Other applications are possible, e.g. solving differential equations, evaluating integrals. Typically, 𝜃

parameters must be trained in turn to realize the 𝑔 𝑥 = 𝑓(𝑥; 𝜃𝑖) equality.

PA R A M E T E R - S H I F T  RU L E

If we can express a function g(𝑥) as 𝑔 𝑥 = 𝑓(𝑥; 𝜃𝑖) where x, 𝜃𝑖 are parameters of a quantum circuit, i.e: 

Then we can write the exact derivative of the function as:
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• Well-known Machine Learning model suited for binary and 

multilabel classification.

Task: binary classifications of feature vectors 𝒙 ∈ ℝ𝒏

i.e. predicting the class outcome 𝑦 ∈ {−1; +1}.

Idea: given a feature map 𝜙 Ԧ𝑥 , 𝜙 Ԧ𝑥𝑖 ∈ 𝑀: dim 𝑀 = 𝑚 > 𝑛 ,finding 

the best linear decision boundary 𝑤𝑻𝝓 𝒙 − 𝒃 = 𝟎
by maximizing:  

𝑓 𝑐1, 𝑐2, … , 𝑐𝑛 =෍

𝑖

𝑐𝑖 −
1

2
෍

𝑖𝑗

𝑦𝑖𝑐𝑖𝑦𝑗𝑐𝑗〈𝜙 Ԧ𝑥𝑖 , 𝜙 Ԧ𝑥𝑗 〉

with 𝑤 = σ𝒊 𝒄𝒊𝒚𝒊𝝓(𝒙𝒊).

When projecting on the original feature space, the 

decision boundary will be generally nonlinear.

S U P P O R T  V E C T O R  M A C H I N E
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𝑓 𝑐1, 𝑐2, … , 𝑐𝑛 =෍

𝑖

𝑐𝑖 −
1

2
෍

𝑖𝑗

𝑦𝑖𝑐𝑖𝑦𝑗𝑐𝑗〈𝜙 Ԧ𝑥𝑖 , 𝜙 Ԧ𝑥𝑗 〉

Kernel function

Linear

Polynomial

Common kernel choices:

• High-dimensional featuremaps are implicitly 

defined by a kernel function, which keeps the 

original feature dimension (hence more efficient to 

compute).

• The kernel function can be interpreted as a 

distance between samples from the same dataset.

Gaussian

S V M  K E R N E L  F U N C T I O N S
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• The kernel function is a non-trainable function of the inputs. 

Other weights that appears in the loss function can be 

trained classically.

• Simple loss function landscape (it’s a quadratic form, easy to 

find global minimum).

• The kernel function determines the overall classification 

performance, and model’s expressivity.

Quantum Support Vector Machine relies on a Quantum 

Computer to evaluate the kernel function, i.e. a Quantum 

Kernel.

Q UA N T U M  S V M

Conjecture: some Quantum Kernels are too hard to compute classically, and such kernels 

may lead better classification performance. 
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Promoting the classical feature mapping to a quantum state:
Quantum circuits of with this structure are suitable kernels.

● Feature maps are still implicitly defined.

● Kernel function is still a measure of similarity 

between different samples.

Pros:

● Hilbert space grows rapidly with qubit’s number

○ Expressive classifiers.

● Quantum kernels are generally hard to compute 

classically

○ No classical counterpart.

● Good results even with small sized circuits

○ Is a NISQ-era algorithm.

Room for quantum advantage.

Cons:

● Lack of featuremap explainability

○ Unintuitive relation between circuit and 

outcome.

● Usually set arbitrarily

○ Problem of chosing a good Quantum 

Kernel.

Q UA N T U M  K E R N E L S
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One risk of quantum kernels, which is observed when the 

number of qubit increases, is the tendency to map the initial 

features very «far from each other», because the Hilbert 

space have a big dimension. This leads to overfitting, i.e. a 

limited prediction power of the model to data unseen during 

the training phase, and additionally, due to NISQ hardware 

noise, kernel values 𝐾 𝑥𝑖 , 𝑥𝑗 ≪ 1 would be very hard to 

estimate.

One technique that mitigates this effect is the Projected 

Quantum Kernel, in which part of the quantum information is 

trown away through partial tracing.

Q UA N T U M  K E R N E L  I S S U E S
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• Quantum computing is a field in rapid expansion, which is gaining more and more interests.

• Quantum advantage has been demonstrated (on paper) for many-qubits, fault-tolerant computing.

• Nowadays, no quantum advantage has been proven experimentally, principally due to hardware 

limitations.

• However, modern NISQ-era computing is leading to several intriguing applications, one of the most 

prominent field being Quantum Machine Learning.

• Parametrized quantum circuits are the key for QML success:

• Variational: trainable circuits, suitable QNN layers, QAOAs, ...

• Feature-embedding: mapping data in high-dimensional Hilbert spaces, boosting discrimination power of classical 

algorithms.

C O N C L U S I O N S

25


