Update on CLD Tracker and HNL studies

Jeremy Andrea, Gaelle Sadowski

Thanks to Leonhard Reichenbach, Andre Sailer, Juraj Smiesko

FCC-PED-SoftwareAndComputing-Full-Simulation, November 2023

Introduction and motivation

Objectives:

- Define different geometries and design options of Vertex Detector
- Candle for physics performance : increasing level of complexity (Tracking, Vertexing, flavour tagging, full analysis)
- Chosen approach: full simulation, for more precise results, use of CLD here.

• Outline:

- Update on CLD tracker studies
- ► First attempts for HNL studies

CLD geometries

- Difference between FCCee_o1_v04 and FCCee_o2_v02 = smaller BeamPipe and adapted Vertex Detector
 - \bigwedge FCCee_o2_v02 geometry is bugged causing a very bad tracks reconstruction
 - CLD_o2_v05, corrected version of FCCee_o2_v02, should be used instead, but only available on nightlies for now: source /cvmfs/sw-nightlies.hsf.org/key4hep/setup.sh
- For more information on CLD goemetries see this talk by A.Sailer

- Before chi2/ndf > 10 for \approx 50 % tracks
- New geometry gives chi2/ndf < 10 for ≈ 99 % tracks

Leonhard Reichenbach, Andre Sailer

Performance plots

D0 resolution – single μ^- – CLD o1 v04

Figure: CLD paper

Comparison with plot made in arXiv:1911.12230v3

• New implementation of the performance plots gives comparable results than the CLD paper

Gaelle Sadowski

CLD Tracker and HNL studies

Performance plots

D0 & pT resolution – single μ^- – CLD _o2 _v05 (10k events)

Digitisation is currently made by smearing simulated hits with resolution values (3 μ m, 5 μ m,...) as the Gaussian width, see code here

Gaelle Sadowski

Performance plots

Summary

- New CLD_o2_v05 gives correct reconstructed tracks
- Test of resolution of vertex detector for the new CLD geometry
- Also for 1 micron resolution, to test extreme case (while probably not realistic).
- Still to be done : comparisons of resolution o1_V04 and o2_V05
- Effect of resolution studied, need to investigate the effect of material budget

The procedure used to produce these plots: Sim & Rec Plots

See talk by J.Andrea G.Sadowski

- Generation of Long Lived Particle within the Heavy Neutral Lepton model
- Inherits from FCCee paper (Alimena&al arXiv:2203.05502v4)

- Production made in the di-electron channels ($m_N = 50$ GeV)
 - ▶ Allows for some comparisons with fastsim potentially
 - Benefits from existing expertise
 - Analysis possibly to be ported on other LLP models,
 - Some events to play with...

Selection steps

- Isolated electrons with minimum pT cuts
 - P cut 5 GeV
- Exactly two opposite signs electrons
- Di-electron invariant mass incompatible with a Z boson
 - ▶ $m_{ee} > 96$ && $m_{ee} < 86$ GeV
- Attempts for reconstruction of vertex from electron pairs

Figure: electron pT [GeV]
 Figure: electron pT normalised [GeV]
 The shape of reconstructed electron pT matched the MC distribution, while the normalisation is lower ⇒ electron reconstruction efficiency to be investigated
 Gaelle Sadowski
 Gaelle Sadowski
 Gaelle Sadowski

First results

First results

• di-electron invariante mass and missing Et coherent with what is expected for the signal

Simulation issue

- We had issues to simulate displaced vertices, HNL vertices were simulated at IP (0,0,0)
- We have tried with HEPMC2 format with MadGraph, but simulation compatible with HEPMC3
- Madgraph is not interfaced with HEPMC3. Solution : generate lhe event (parton), then run pythia standalone to produce HEPMC3 file
 - Simulation of displaced vertex require status code 2 for the HNL, while it is status 22 out of pythia => script to change by hand the status in hepmc3

Summary

- Method to generate HNL events with correct displacement implemented and tested
- New geometry o2_v05 gives better track reconstruction, allowing for proper displaced vertex reconstruction
- Next steps
 - Study electron/track reconstruction efficiencies
 - Study displaced vertex reconstruction efficiency
 - ▶ Generate more signal benchmark points and backgrounds
 - Reproduce fastsim analysis
 - Study impact of tracker geometry on physics performance

Backup

K4run with EDM4Hep input available

► So far k4run was only available with LCIO input:

It is now available with both LCIO and EDM4Hep input: One needs to use the new repository CLDConfig instead of the old one CLICPerformance

k4run CLDReconstruction.py -inputFiles outputSIM_edm4hep.root \ -filename.PodioOutput outputREC_edm4hep.root \

-n 100

k4run CLDReconstruction.py -inputFiles outputSIM.slcio \
-filename.PodioOutput outputREC_edm4hep.root \
-n 100

Leonhard Reichenbach, Andre Sailer, see talk