

Search for Higgs boson pair production in **bbb** final state in association with a vector **boson with the CMS detector**

Licheng Zhang (Peking University) on behalf of the CMS Collaboration licheng.zhang@cern.ch

Unique features of VHH production

Di-Higgs study can contribute to Higgs potential study. [1]

Lagrangian can be written as the following form: λ_3 and λ_4 corralated to 3H and 4H vertices respectively. As 3rd largest Higgs pair production modes. VHH is demonstrated to provide competitive upper bounds. [3][4]

The charged lepton and invisible neutrino from W- or Z-boson decays in the VHH production provide a good trigger of signal events.

VHH can directly distinguish ZZHH and WWHH by numbers of final states leptons.

10

TABLE III: The sensitivity to $\lambda_{HHH} = \kappa \lambda_{HHH}^{SN}$ in several production channels of Higgs boson pairs at the HL-LHC.

Trained separately in High Kl/SM Kl regions

HH production at 14 TeV LHC at (N)LO in QCD

M_H=125 GeV, MSTW2008 (N)LO pdf (68%cl)

Events Selection Analysis Strategy 4 analysis channels: based on the decay of vector bosons **HLT/Object/Event Selections** $e(\mu)$ w $e(\mu)$ z $e(\mu)$ z $e(\mu)$ z MM **Full Hadronic Double Leptons;** Single Lepton; MET; **KI** Categorization ertraining check for classifier: BDTG DeepJet and ParticleNet are used for Jet tagging Signal (test sample) Signal (training sample) Background (test sample) gnal (background) probability = 0.905 (0.314) High Coupling Cats SM Coupling Cats H 0.2 DP2020 002

• 3 channels X 2 Kl Cats = 6 SvB BDTs

• Optimized (inputs, models) in each channel.

• An ResNet based <u>SvB Classifier</u> is trained

SvB Classifier scores will be used as the observables for template fit

- Signal Region(SR) : rHH < 25GeV</p>
- High Purity (**HP**) : <u>Dbb</u> > 0.94
- Control Region(CR): 25GeV<rHH<50GeV</p>
 Low Purity(LP): 0.90<<u>Dbb</u><0.94</p>
- SideBand(SB) : 50GeV < rHH</p>
- Failed Region(FR) : 0.80<<u>Dbb</u><0.90</p>

Result

• First search for VHH production in CMS, published on Moriond 2023 • Complementary to previous analyses, strong sensitivity at κ_{λ} around 5: 43(22)

SvB Classifiers

In V-Leptonic channel

In V-Hadronic channel

Simulated ZHH -> llbbbb even[.]

W_{bin, Pass}

W_{bin}, Inverted

 $Weight_{bin} =$

(US)

(THI)

Background Modelling

Novel Machine Learning based background modelling technology is adapted

• In 2L channel (and Boosted topology), we use 2b-tagged MC events(failed selection events) to mimic the background events in reseaching regions.

294(124) times the cross section from SM prediction

• Report observed 2.6 σ excess @ SM, the observed (expected) upper limit at 95% CL is

• The observed (expected) allowed intervals from the search at 95% CL are:

	κ_{λ}	$\kappa_{\rm VV}$	$\kappa_{ m V}$	κ_{ZZ}	$\kappa_{ m WW}$. [™] 30 [™] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	138 fb ⁻¹ (13 TeV) ● Best fit (κ _{WW} , κ _{ZZ}) = (1.0, 1.0) ♦ SM Higgs	
Observed	(-37.7, 37.2)	(-12.2, 13.5)	(-3.7, 3.8)	(-17.4, 18.5)	(-14.0, 15.4)	10	09% CL 95% CL 68% CL	
Expected	(-30.1, 28.9)	(-7.2, 8.9)	(-3.1, 3.1)	(-10.5, 11.6)	(-10.2, 11.6)	0 <mark>-</mark> -) ⁻¹
						-10		,

- [1] Phys. Rev. D 72, 053008 (2005) [2] Phys. Lett. B 732 (2014) 142-149 [3] ATLAS-CONF-2019-049 [4] Phys. Rev. D 95, 073006 (2017)
- **1.** Peking University
 - 2. University of Maryland
 - (US) 3. Carnegie-Mellon University
 - 4. Chulalongkorn University

