Motivation

Study Higgs self coupling κ_2 and Higgs boson-Vector boson coupling C_{ν}.

The charged lepton and invisible neutrino from W- or Z-boson decays in the VHiggs production provide a good trigger of signal events.

VH can directly distinguish ZZHH and WWHH by numbers of final states leptons.

Background Modelling

Material Machine Learning based background modelling technology is adopted

- In 2L channel (and Boosted topology), we use 2b-tagged MC events (failed selection events) to mimic the background events in reweighting regions.

- In hadronic channel, ResNet based NN is used to realise the data-driven BGs modelling for QCD process from 2b-tagged data.

Events Selection

4 analysis channels: based on the decay of vector bosons

- Double Leptons: Single Lepton: MET: Full Hadronic

DeepJet and ParticleNet are used for Jet tagging

Higgs decay to (largest BR) final states: $\mu \nu$ or $\nu \gamma$

Resolved and Boosted topologies

- Signal Region (SR): $hH < 25 GeV$
- Control Region (CR): $25 GeV < hH < 50 GeV$
- SideBand (SB): $50 GeV < hH$
- Failed Region (FR): $0.80 < Q_{bb} < 0.90$

- High Purity (HP): $D_{bb} > 0.94$
- Low Purity (LP): $0.90 < Q_{bb} < 0.94$

Analysis Strategy

HLT/Object/Event Selections

KI Categorization

Bring extra sensitivity over KI

- Samples used for training is $KI = 20$ vs $KI = 0$
- 3 year MCs are combined for training
- Variables and BDT models are optimized in all channels

SvB Classifiers

Trained separately in High KI/SM KI regions

- In V-Leptonic channel
- 3 channels X 2 K_I Cats = 6 SvB BDTs
- In V-Hadronic channel
- An ResNet based SvB Classifier is trained
- Optimized (inputs, models) in each channel

SvB Classifier scores will be used as the observables for template fit

Result

- First search for VHH production in CMS, published on Moriond 2023
- Complementary to previous analyses, strong sensitivity at k_2 around 5: 43(22)

- Observed excess at 2.6σ SM, the observed (expected) upper limit at 95% CL is $294(124)$ times the cross section from SM prediction

- The observed (expected) allowed intervals from the search at 95% CL are:

<table>
<thead>
<tr>
<th>k_{1}</th>
<th>k_{12}</th>
<th>k_{2}</th>
<th>k_{122}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected</td>
<td>Expected</td>
<td>Expected</td>
<td>Expected</td>
</tr>
<tr>
<td>k_{1} and k_{2}</td>
<td>k_{12}</td>
<td>k_{122}</td>
<td>k_{1} and k_{2}</td>
</tr>
<tr>
<td>$k_{1}=5.5$ is 2.6(22)</td>
<td>$k_{12}=5.5$ is 2.6(22)</td>
<td>$k_{122}=5.5$ is 2.6(22)</td>
<td>$k_{122}=5.5$ is 2.6(22)</td>
</tr>
</tbody>
</table>