Muon identification using MVA techniques in the CMS experiment
Clara Ramón Álvarez on behalf of the CMS Collaboration
LHCC Poster Session 2023 – CERN

Introduction and motivation

Improve muon selection and identification (ID) for muons with medium p_T, range → key in many CMS analysis. Whether those are:
- Isolated muons form prompt decay of W, Z, H and decay of τ
- Real muons from heavy flavour decays.

Multivariate analysis (MVA) methods used to construct two muon ID discriminators:
- MVA ID: General muon selection against spurious hits in the muon system. We construct an ID more flexible and performant than the cut-based ID [1] (used during Run 2) for muons with p_T between 20 and 120 GeV. ID to be used during Run 3.
- Prompt MVA: select isolated muons from H/W and τ. Already used during Run 2, crucial in the observation of ttH, $tt\tau$ and Zq; the precision measurement of WZ and to increase sensitivity in the search for electroweak production of SUSY.

Input Variables

MVA ID
12 Input variables related to:
- Quality of the track reconstructed in the muons system (stand alone) and in the tracker
- Quality matching between both
- Number of muon station with hits
- Number of good hits in the tracker

Prompt MVA
12 Input variables related to:
- Isolation of the muon
- Information of the jet reconstructed within the same cone
- Impact parameter (IP)

Pre-selection and samples

- Used 2018 dataset (59.7 fb$^{-1}$)
- MC:
 - $t\bar{t}$ semileptonic for training
 - DY for performance evaluation
- Pre-selected muons are loose muons (cut-based ID) with $p_T > 10$ GeV + Relaxed isolation and IP selection* (for the prompt MVA)
- look for geometrical matching traced back using generation information

Machine learning models

MVA ID
Random Forest: 200 trees with a maximum depth of 8
Medium working point defined to have same background efficiency as the medium cut-based ID

Prompt MVA:
BDT: 200 trees with a maximum depth of 8
1000 trees with max depth = 4
WP shown optimized for $t\bar{t}H$ measurement

Performance evaluation

Efficiency in data evaluated using Tag-and-Probe method to select muons from $t\bar{t}$ decay:
- Tag: pass Tight WP (cut-based ID)
- Probe: preselection

Background estimation:
MVA ID: estimated using $t\bar{t}$ MC

Prompt MVA:
- Nonprompt rate measured in a Multi-Jet enriched region
- EWK contributions subtracted using a fit to:
 \[\gamma^p = \gamma^\mu \gamma^{\text{prompt}} (1 + \text{scale factor}) \]

For same background efficiency, systematically higher efficiency than with cut based

Summary

- Higher efficiency than cut-based ID (for the same background efficiency)
- Continuous score gives more flexibility for analysers
- MVA shown to be more resilient as a function of PU than the cut-based ID → Great news for run 3!
- Efficiency > 80% for $p_T > 20$ GeV
- Factor of 2-3 reduction of background from non prompt leptons
- Has been a key element in several full Run 2 CMS published results: $t\bar{t}H$, $tt\tau$, $t\bar{t}q$, WZ, EWK,SUSY...

Example of a input variables in each MVA:

MVA ID

Prompt MVA

Do you select muons in your analysis?
We have an MVA for you!

A factor of 2 (3) smaller nonprompt rate of the prompt MVA for muons with $|\eta| < 1.2$ ($|\eta| > 1.2$)