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Motivation

CMS data are gathered in time intervals (lumisections / LSs) ~23.31s.

* Data certification works on Run level - 0(1000) LSs.
e Experts monitor several reconstructed distributions - Monitor Elements (MEs).

* Misbehaving subsystems in one LS would cause the rejection of a whole run.

* Certifying every LS is unfeasible without an automated approach - AutoEncoder (AE) [1]

The Model

e AE: unsupervised neural network - no truth labels needed for training.

* Training:

- on a chosen ME, performed on a GOOD run per-LS data.

- performed through the minimization of the reconstruction error (mean squared error):
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where y and y are respectively the input and the output of the AE and n is the bin number.

* Testing:

- on the same ME, performed on an anomalous run (BAD).

- deviations from the learned behavior produce peaks in the reconstruction error.

* Various types of AEs, such as the LSTM AutoEncoder [2], can be employed.

* A Dense Under-complete AutoEncoder (Fig. 1) is used.

ENCODING DIMENSION 1

ENCODING DIMENSION 2

Fig.1: The Dense AutoEncoder architecture utilized is characterized by the

dimensions of two layers only.

* Inthe following we test two BAD runs after training the model on a GOOD run using the ME
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Fig.2: The histograms of MET
Significance for the three runs. The
anomaly is visible in the histogram

center for the blue and orange runs.

Reconstruction loss
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Fig.3: The reconstruction error of the
AE as a function of the LS number for
the three runs. Some peaks are
visible for the two anomalous runs.
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Fig.4: The reconstruction error of Fig.5: The reconstruction error of
the AE as a function of the LS the AE as a function of the LS
number for run 360950. number for run 359763.
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Fig.6: The input histogram (blue) and the output (orange) of the AE for the LS corresponding
to peak of the reconstruction loss for run 360950.
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Fig.7: The elimination of LS 469 for run 360950 completely removes the anomaly from the run.

Conclusions

* We developed an AutoEncoder-based Anomaly Detection Tool capable of detecting
anomaliesin DQM MEs with a per-LS granularity [3].

* We tested the tool on several runs flagged BAD by JIME DQM and identified the source of
the anomalous behaviorin a limited set of LSs.

* In particular, in the examples presented here, we removed one LS from each anomalous
run and verified that the remainder was no longer anomalous.

 The equivalent luminosity recovered from the two runs is 350 pb ~1, or around 1% of the
entire 2016 CMS dataset.

* Exploiting the per-LS granularity in DQM and systematically employing the tool we
presented will enable an increase in the efficiency of the DC procedure, ultimately
resulting in a larger dataset available for physics analyses.
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