
Line Segment Tracking in Phase 2 software upgrade in CMS
Yanxi Gu et al.* on behalf of the CMS collaboration

Tracking challenges and GPU solutions

Authors and references

Balaji Venkat Sathia Narayanan, Jonathan Guiang,
Manos Vourliotis, Yanxi Gu, Slava Krutelyov, Matevž

Tadel, Avi Yagil[UCSD]
Tres Reid, Gavin Niendorf, Peter Wittich[Cornell]
Mathew Dittrich, Mayra Silva, Philip Chang[U of

Florida]
Andres Rios Tascon, Peter Elmer [Princeton]

• Tracking is a very time-consuming component of the CMS event reconstruction today (~40%)
• Due to the massive number of collisions and tracks in the upcoming HL-LHC, traditional Kalman Filter based method will take

a very large amount of time. Novel GPU solutions are essential for outer track fi
• Line Segment Tracking(LST) is a highly parallelizable track building algorithm designed to exploit GPU capabilities
• The algorithm starts from tracker hits and connects neighboring objects to build short tracks. Then it links short tracks to get

longer tracks. Each linking step is parallelizable on GPU

Algorithm logic

Physics and timing performance

Status and plans

Track candidate collection

From hits to Mini-Doublets

• threshold set to 0.8 GeV

• Calculate a particle trajectory with the minimum to

defi

• Combine hits to build a Mini-Doublet(MD)

pT

pT

From Mini-Doublets to Segments

• Construct compatible module maps between layers,

with positive/negative charge, threshold

• Link MDs to Segments

• Each Segment has 4 hits (2 MDs)

pT

From hits to Mini-Doublets

From MDs to Segments

Each layer has modules built out of a stack of 2 sensors. so
this step is combining the 2 sensor hits in 1 layer

This step links between 2 layers

• Require Segments to be in adjacent layers and share a common MD

• Geometric selection: alignment check, circle fi

• Link compatible segments to build T3s. Each T3 has 6 hits (in 3 layers)

From Segments to T3s

From T3s to T5s
• Two T3s in adjacent layers sharing a common MD can be linked as one T5.

• Apply loose orthogonal quality cuts based on geometrics

• Train a 2-layer DNN, with each layer 32 nodes. Then apply cut on DNN scores

• From the comparison with the original cut based selections, displaced tracks effi

From T5s to pT5s
• Accept 3 hits or 4 hits pixel seeds as input pixel Line Segments(pLS)

• Link the pLSs with T5s. Require them to pass geometric constraints.

From T3s to pT3s
• Use the remaining T3s and pLSs to build pT3s. Each pT3 has 9-10 hits

• The black and red curves show the comparison between LST and CMSSW benchmark performance (CKF algorithm, ref. 4)

• LST has achieved comparable effi

• LST reduces the track fake rate greatly, but has higher duplicate rate than the CMSSW baseline

• LST at high shows signififi

pT > 0.8

rvertex

• Timing performance is measured on GPU

(NVIDIA A100). Here is the average time to

process one event

• Timing performance improves when going from

single stream to multi-stream

• Does not include data transfer time from host to

device and vice versa

• Good performance LST algorithm with high effi

• Test setup with CMSSW(offl

• Standalone code fully migrated to alpaka(ref. 6) to support both CPU and GPU backend

• Integrate LST as an offi

• Extension to broader phase space: T4(displaced tracks), pT2(low pT tracks)

• ML explorations on different LST objects, GNN possibility

• Synergies with other phase 2 algorithms, e.g. mkFit(ref. 5), etc

• Performance of Line Segment Tracking algorithm at HL-LHC, CMS Public Note, CMS DP-2023/019
• Improved Performance of Line Segment Tracking Using Machine Learning, CMS Public Note, CMS DP-2023/075
• Improving tracking algorithms with machine learning a case for line-segment tracking at the High Luminosity LHC, CMS CR-2023/075
• Description and performance of track and primary-vertex reconstruction with the CMS tracker, CMS-TRK-11-011
• Speeding up Particle Track Reconstruction using a Parallel Kalman Filter Algorithm, Journal of Instrumentation, arXiv:2006.00071
• Tuning and optimization for a variety of many-core architectures without changing a single line of implementation code using the Alpaka library,

arXiv 1706.10086

Duplicate removal (within each collection) and cross cleaning (across different

collections) are implemented
• pT5 : purest object with most hits

• pT3 : low tracks missed by pT5

• T5 : displaced tracks which escape the detection in the pixel detector

• 4-hits pLS: low and high tracks

pT

pT |η |

http://cms.cern.ch/iCMS/jsp/openfile.jsp?type=DP&year=2023&files=DP2023_019.pdf
http://cms.cern.ch/iCMS/jsp/openfile.jsp?type=DP&year=2023&files=DP2023_075.pdf
https://iopscience.iop.org/article/10.1088/1742-6596/2375/1/012005
https://arxiv.org/pdf/1405.6569.pdf#page=14
https://arxiv.org/abs/2006.00071
https://arxiv.org/abs/1706.10086
https://arxiv.org/abs/1706.10086

