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Tracking challenges and GPU solutions

* Tracking 1s a very time-consuming component of the CMS event reconstruction today (~40%) e
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* Due to the massive number of collisions and tracks in the upcoming HLL.-LHC, traditional Kalman Filter based method will take
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a very large amount of time. Novel GPU solutions are essential for outer track ﬁnding with competitive timing w

* Line Segment Tracking(LLST) 1s a highly parallelizable track building algorithm designed to exploit GPU capabilities
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* The algorithm starts from tracker hits and connects neighboring objects to build short tracks. Then it links short tracks to get o
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longer tracks. Each linking step 1s parallelizable on GPU I -

Algorithm logic
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Physics and timing performance

| o Tilhe Bladk anel redl axires dhovy (he coarisn between LST and CMSSW benchmark pe;a KF nrithm, reld - 4 - i’
|+ LST has achieved comparable efficiency with CMSSW tracking benchmark performance above targeted p; > 0.8 GeV i’ | y (NVIDIA A100). Here 1s the average time to
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* Timing performance is measured on GPU
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|| * Timing performance improves when going from ik

process one event |

|« LST reduces the track fake rate greatly, but has higher duplicate rate than the CMSSW baseline

e LST at high r,

shows signiﬁcantly better tracking efﬁciency even compared to baseline tracking with all iterations
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Status and plans

e Good performance LST algorithm with high efficiency and low fake rate * Integrate LST as an official CMSSW external package to allow further testing

* Test setup with CMSSW (offline and HLT), got comparable physics performance and centrally. Full integration into CMSSW package can follow

potential to greatly reduced the timing * Extension to broader phase space: T4(displaced tracks), pT2(low pT tracks)

» Standalone code fully migrated to alpaka(ref. 6) to support both CPU and GPU backend * ML explorations on different LST objects, GNN possibility

* Synergies with other phase 2 algorithms, e.g. mkFit(ref. 5), etc
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