

Performance of the CMS HGCAL readout electronics system in a beam test at CERN A. Alpana On behalf of CMS collaboration

From readout electronics to physics inference

- \succ Calorimeters are important to measure the energy, position, and time of charged and neutral hadrons as well as e^{\pm} and y.
- \succ These are the building blocks of Jets (quarks & gluons), taus, Missing transverse energy (MET) etc. which are important discovery tools at the LHC.

The measurable signal, as the particle traverses the detector, is eventually converted to an

Cassette from one HGCAL layer Trigger data: Position and energy HGCAL back-end (BE) sums of 2x2/3x3 cells TPG DAQ data: Timing 5D info (E, x, y, z, t) DAQ Control Timing, Fast control, Longitudinal view of HGCAI HGCAL front end Slow control E) electronics Do the ASICs perform as needed?

HGCAL readout electronics system

electric pulse which is shaped and digitized for further analysis and permanent storage.

Accuracy of offline reconstruction depends on performance & reliability of electronics systems.

- The CMS High Granularity Calorimeter for HL-LHC comprises around 6 million readout channels.
- Data rates from on-detector electronics are about • O(100) Tb/s for Trigger primitives at 40 MHz, and
 - O(20) Tb/s (DAQ) at an L1 accept rate of 750 kHz.
- Complex electronics system: 3 HGCAL-specific ASICs across multiple boards.

Beam test measurements with real particles validate the integration of all different ASICs, boards, and their configurations and operation.

Will the system perform as needed? Simulation-based studies (emulators) to investigate the effect of high trigger and data rates, rare cases of data loss from buffer overflow.

End-to-end validation of the HGCAL readout electronics chain

Two Si Modules (300 μ m & 200 μ m thick) biased at -270 V. Hexaboard PCB: 3x HGCROC V3 and 1x Rafael ASIC.

Beam test experiments in Sep. 2023: exposed a full vertical slice of the **HGCAL readout chain** to particle beams for the first time.

- Two silicon trains with **Engine V3** (3x lpGBT V1 and VTRX+) and **Wagon** PCB,
- One ECON mezzanine per module with one **ECON-T**-P1 and **ECON-D**-P1.
- Silicon signal measured by **HGCROC** (amplitude and timing).
- Elink **CON**centrators process data, build event packets, and send data to BE via **IpGBT**s.
- BE "miniDAQ" validates and saves raw event packets from ECON-D to disk using **Slink**.

Effect of of zero-suppression: number of hits per channel read out without ZS applied (passthrough) and with ZS applied (right). The ECON-D ZS algorithm selects channels with above threshold, like those close to the

• System ran unattended without major data losses, capturing over 1 billion events with varied particle beams, calibration, and pedestal

"trains"

data, at up to 100 kHz rate.

Goals achieved:

- Tested two **ECON-T** algorithms and self-triggered using TPG data.
- Tested zero-suppression of DAQ data in FE using **ECON-D**.
- Tested **DTH** (non-HGCAL CMS board common to all Phase 2). **Ongoing efforts & next steps:**
- Stress test the multiple interfaces: **BE** → **ROC** → **ECON-{T,D}** → **IpGBT** \rightarrow **VTRX**+ \rightarrow **BE**.
- Verify event synchronization: examine timestamps across all ASICs and BE, and confirm consistency event-by-event.

Throttle or truncate? Software optimization of data loss studies for HGCAL DAQ

- \succ Study ASIC buffer usage in terms of deadtime (global) vs. truncation (localised).
- > C++ code simulates full readout chain (FE and BE Emulator).

- The readout electronics system is optimized for average data rates.
- Fluctuations may lead to truncation (some ECON-D data may be lost) because of buffer overflows in different parts of the system.
- No data loss upto <1.3x average rate increase, but ECON-D buffer overflows expected beyond that.

- > Need high-statistics for rare throttling cases at low dead time (<1%) and 750 kHz L1 rate.
- \succ Create O(10⁷) pseudo-events from O(10⁵) ttbar fully-simulated events (200 pileup, end-of-life noise) that preserve the module-to-module occupancy correlations in HGCAL.

Data amount from ttbar fully-simulated events (200 pileup, end-of-life noise).

Data amount from ttbar fully-simulated events (200 pileup, end-of-life noise).

0.02 0.04 0.06 0.08

- Frac. of events with ≥1 ECON-D truncated
- BE can reduce truncation by throttling CMS L1As but this raises deadtime overall for the experiment.
- Ongoing optimization to determine the logic to be used to throttle L1As versus when to allow for more extensive truncation.
- With 26'000 ECON-D spread across 47 layers, truncation may not be an issue but it is crucial to avoid projective areas being truncated.

Conclusion

- After running the entire DAQ chain, valuable data was collected, and a thorough follow up of failure * modes is taking place.
- Insights gained from this beam test will significantly contribute to the final system's construction. *****
- Optimizing deadtime versus incomplete events (with truncated data) are crucial for system-level * validation.

Acknowledgement

The successful execution of the beam test was only possible through concerted efforts and collaboration involving a substantial number of individuals and this work is part of a collaborative endeavor undertaken by the CMS-HGCAL collaboration.

gratefully acknowledge the support of the **Council of Scientific and Industrial Research (CSIR)** and the **Department of Science and Technology (DST)** through the PhD fellowship and CMS grant.