Measurement of the net-kaon net-Ξ correlations in pp, p–Pb and Pb–Pb collisions with ALICE

Mario Ciacco, on behalf of the ALICE Collaboration

LHCC Meeting – Poster Session, 27 November 2023

Hadronisation and strangeness conservation

- String fragmentation [1]
 - short-range rapidity correlations
 - mostly correlation of unlike-sign charges
- Canonical statistical hadronisation (CSM) [2]
 - thermalised hadronic system with long-range rapidity correlations
 - symmetry of like- and unlike-sign correlations

Event-by-event observables

- Cumulants κ_i
 $$\kappa_1 = \langle \eta \rangle$$
 $$\kappa_{11}(m,n) = \langle (m - \langle m \rangle)(n - \langle n \rangle) \rangle$$
 $$\kappa_2 = \langle (n - \langle n \rangle)^2 \rangle$$ → (co)variance
- Correlation ρ
 $$\rho(m,n) = \frac{\kappa_{11}(m,n)}{\sqrt{\kappa_2(m,n)\kappa_2(n,m)}}$$
- Net-particle number Δn
 - at the LHC, $\mu_B \approx 0$ [3] → matter balances antimatter → cancellation of the effect of volume fluctuations [4]

Results

- Second-to-first order cumulant ratio of net-Ξ
 - sensitive to unlike-sign strangeness correlation
 - smooth evolution across multiplicity
 - indication of longer-range rapidity correlations → ~3 units of rapidity compared to ~1 unit of rapidity for string fragmentation

Candidate selection

- Charged kaons
 - dE/dx with Time Projection Chamber
 - velocity with Time-of-Flight detector
- Charged Ξ baryons
 - cascade decay
 - $\Xi \rightarrow (\Lambda \rightarrow p + \pi^-) + \pi^- + cc$
 - selection based on Boosted Decision Trees [5]

References