

Entering the precision era for the measurement of strangeness production with ALICE in Run 3

Francesca Ercolessi for the ALICE Collaboration Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Bologna

K

 \bigcirc pp, $\sqrt{s} = 7 \text{ TeV}$

PHYSICS MOTIVATION

Continuous evolution of strange hadron yield ratios to pions with the charged-particle multiplicity observed at the LHC, smoothly connecting different collision systems and energies [1-10]

The strange hadron yield ratio to pions increases with the particle **multiplicity** wrt MB pp, saturating for central Pb–Pb collisions

Strange content hierarchy: $|S_{\Omega^{\pm}}| > |S_{\Xi^{\pm}}| > |S_{\Lambda}| \approx |S_{K_{S}^{0}}|$

With Run 3 data, the measurement of strange hadron production can be extended to:

high multiplicity \rightarrow pp data sample at $\sqrt{s} = 13.6$ TeV

ALICE IN RUN 3

(×1000 more events wrt Run 2)

low multiplicity \rightarrow pp data sample at $\sqrt{s} = 900$ GeV (X300 more events wrt Run 1)

Focus on Ω (S = 3) \rightarrow the most sensitive to strangeness enhancement

NEW Fast Interaction Trigger (FIT) ALICE 2 NIM 1039, 167021 (2022) • 4 arrays of Cherenkov detectors and scintillators LHC • Triggering, collision time, centrality estimation

ALICE in Run 3!

STRANGE HADRON RECONSTRUCTION

The identification of (multi-)strange hadrons is based on kinematical and topological criteria

 $V^0 \rightarrow$ neutral particle weakly decaying into a pair of charged particles (V-shaped) **Cascade** \rightarrow charged particle weakly decaying into a V⁰ + charged particle

0.035 ALICE Performance 0.03 Run 3, pp $\sqrt{s} = 13.6$ TeV 0 < p_ < 10 GeV/c |y| < 0.58 0.025⊢ ${\sf K}^0_{
m s} o \pi^+\pi^-$ Gaussian fit + pol. bkg. 0.02 --- pol. bkg. 0.015 0.01 0.005 **Excellent performance for strange** hadron reconstruction with 0.5 0.44 0.46 0.48

FIRST MEASUREMENT OF Ω PRODUCTION AT 900 GeV

This is the first measurement of Ω production in **pp collisions at 900 GeV** (86×10⁶ events)

This result complements ALICE measurements in the strange hadron sector at 900 GeV from **Run 1** (K^0_{S} , φ, Λ, Ξ) [12]

The data sample also allows for a multiplicity differential analysis (two multiplicity classes)

Phenomenological models such as PYTHIA 8 and EPOS-LHC overall underestimate the yields

ALI-PREL-558500

Ω PRODUCTION AT 13.6 TeV

0.52

This analysis exploits the large MB data sample of pp collisions at 13.6 TeV collected by ALICE in 2022 80×10^9 events $\rightarrow \times 1000$ more wrt ALICE Run 2 analysis at 13 TeV [2,3]

Improvement of the statistical precision up to a factor 20 in the low p_{τ} region and up to a factor 10 at high p_{τ}

The Ωp_{τ} -spectra are measured with **unprecedented precision** and granularity in multiplicity

Multiplicity classes are based on the signal amplitude measured in the FT0 arrays of the FIT detector (FT0A + FT0C)

Hardening of the Ωp_{τ} -spectra with increasing multiplicity

Ω/π RATIO AT MIDRAPIDITY

The Ω/π ratio measured in pp data at $\sqrt{s} = 13.6$ TeV increases with the charged pion multiplicity at midrapidity \rightarrow the trend is **consistent with previous ALICE results** [1–3]

The first measurement of Ω yields in pp collisions at 900 GeV is consistent with the results obtained at higher energies

PYTHIA 8 with Ropes qualitatively describes the increase with multiplicity, whereas **PYTHIA 8 Monash** predicts no enhancement with multiplicity

ALICE in Run 3 plans to collect O(10¹²) pp collisions at $\sqrt{s} = 13.6 \text{ TeV} (\times 3000 \text{ more wrt the full Run 2 sample})$

Minimum-bias sample + software triggers based on specific physics cases (e.g. events with Ω candidates)

SUMMARY

The production of multi-strange Ω baryons is studied for the first time using Run 3 pp collisions at 13.6 TeV and 900 GeV This is the first Ω measurement in pp collisions at 900 GeV, complementing ALICE results from Run 1

The Ω/π ratio increases with multiplicity in pp collisions at 13.6 TeV consistently with previous results obtained by ALICE, reaching a higher statistical precision (by a factor 10–20) and an unprecedented multiplicity granularity

The first Ω yield measurement at 900 GeV is consistent with results obtained at higher energies $\rightarrow \Omega/\pi$ at the lowest centre-of-mass energy at the LHC follows the same trend with multiplicity observed for higher energies

THIS IS JUST THE BEGINNING...

francesca.ercolessi@cern.ch