

A 20 ps SILICON DEVICE FOR THE ALICE 3 TIMING LAYERS

Sofia Strazzi (University and INFN, Bologna) on behalf of the ALICE Collaboration

LHC Interaction Point 2, Run 5 (2035) and 6

- collect significantly **higher luminosities** compared to those collected with the current

The new double-LGAD concept was introduced and tested for the first time. It consists of

V (V)

summing up the signals generated by two layers of LGAD using a single front-end amplifier.

https://doi.org/10.1140/epjp/s13360-023-04621-x

higher (doubled) charge at the input of the amplifier for all the thicknesses \rightarrow advantage for the electronics.

> is already ongoing to optimize the sensor design.

https://doi.org/10.48550/arXiv.2211.02491

complete coverage in a single layer with a monolithic design \rightarrow simpler and cheaper assembly.

Extensive R&D

with the goal to significantly pushing the time resolution well beyond current values.

A detailed **simulation work**

was studied for the first time. 10.1088/1748-0221/17/06/P06007 unexpected higher crosstalk higher efficiency w.r.t. fill factor

SiPMs with different protection layers (thickness & material) were tested and compared. https://doi.org/10.1140/epjp/s13360-023-03923-4

increased response is related to Cherenkov light produced in the protection layer

→ Possibility to **detect and distinguish** photons & MIPs at the same time

In-deep investigation on the Cherenkov effect

https://doi.org/10.1140/epjp/s13360-023-04397-0

6	VR 🗔	SR1	SR15 [ER1	
10°				V	$V_{OV} = 2 V$
10					

0.06

0.05

sensors

LGADs

the single

compared to

time resolution of ~20 ps for **all thicknesses** (25, 35, 50 µm)

Ongoing: study of even thinner LGADs (**15 & 20 µm**) in single and double config.

Simulations show that thinner layouts with a gain **layer** could allow this technology to reach the ALICE 3 time performance requirements while maintaining a reasonable power consumption.

> **Ongoing:** analysis of data taken with the first structures produced.

 \rightarrow Time res. ~20-30 ps

at 4-6 V of OV

 \rightarrow prod. of photons

 \rightarrow Improvement as a function of the number of fired pixels

→ Time res. < 20 ps for fired pixels \geq 6 (majority) of cases)

Ongoing: study of SiPMs with a larger area and pitch to cover the full Cherenkov cone, considering different resins.