Find us here!

Scattering and Neutrino Detector at the LHC

Results from SND@LHC (Scattering & Neutrino Detector)

Riddhi Biswas* (NTU, Singapore), **Eduard Ursov** \oplus (Humboldt University of Berlin) On behalf of the **SND@LHC collaboration**

LHCC poster session, 27th November 2023, CERN

Introduction

SND@LHC is a compact and stand-alone experiment measuring neutrinos produced at the LHC¹. It was approved by CERN on March 17th, 2021. Built & commissioned in less than 1 year, it has successfully collected 68.6 fb⁻¹ data during LHC Run 3!

Overview:

- Located in **TI18**, 480m downstream of the **ATLAS IP1 (forward direction)** large flux of high energy neutrinos (100 GeV – few TeV).
- Off-axis unexplored pseudo-rapidity region of $7.2 < \eta < 8.4$ all three flavour neutrinos (including tau) from charmed hadron decays.

Physics Programme

- Measurement of the $pp \rightarrow v_X X$ cross section (including the least studied tau neutrinos v_{τ}).
- Heavy flavour production in pp collisions.
- Lepton flavour universality test in neutrino interactions.
- Direct search for feebly interacting particles (FIPs) through their scattering.

Figure 3. Sensitivity of SND@LHC to the leptophobic portal – FIP search ².

Run 3: 250 fb-1

Neutrinos in acceptance | CC neutrino interactions Yield $\langle E \rangle [GeV]$ Yield $\langle E \rangle [GeV]$ Flavour 3.0×10^{12} 452

Figure 4. Available cross-section measurements. SND@LHC lies in the unexplored energy range.

910	^{c6} + T2K (CH) 14 ■ GGM-PS 79
360	$\begin{array}{c} \bullet \\ \bullet $
250	ArgoNeuT 12 MINOS 10
140	H ANL 79 ▲ NOMAD 08
140	O BEBC 79 ♦ NuTeV 06
20	BNL 82 X SciBooNE 11
10	$ \bigcirc CCFR 97 \qquad \bigotimes SKAT 79 \\ \Box CDHS 87 \qquad * IC HESE showers 17 (avg. of v, \bar{v}) $
1690	10^{-2} L 1 101 102 103 104 105 106
1000	10^{-1} 10^{-1} 10^{-1} 10^{-1} 10^{-1} 10^{-1} 10^{-1}
	Neutrino energy E_{ν} [GeV]

Electromagnetic Shower Reconstruction in Sci-Fi detector

Reconstruction of the Electromagnetic (EM) showers – identification of v_e CC events.

- **Problem : Hit counting insufficient** to reconstruct the EM shower energy precisely.
- Coarse sampling of EM shower by the Sci-Fi detectors leads to degeneracy between the energy and shower starting position.
- **Methodology:** Adopted the **Maximum Likelihood approach.**
- 1. Generate "particle gun" electron Monte Carlo (MC) simulations using Geant4.
- 2. Produce **templates of** the hit patterns for each event.
 - **Figure 7. Hit Templates for** various energies.

3. Evaluate the **likelihood for each shower** using the hit pattern templates & Poisson statistics

> Figure 8. Likelihood Scan for event energy = 300 GeV.

SND@LHC

Identify all neutrino flavours & detect FIPs - Hybrid Detector

- Veto System
- Vertex detector & Electromagnetic Calorimeter Emulsion Cloud Chamber (interleaved **tungsten** neutrino target + emulsion) + electronic trackers (Sci-Fi) Hadronic calorimeter (HCAL) & Muon system

Test Beam Analysis

Test beam was conducted in August 2023 at SPS. Pion runs with 100, 140, 180, 240, 300 GeV beam energies + 160 GeV muon run. Average event-recording rate - 15x10⁶ events/hour.

Goal – to calibrate SND@LHC HCAL and Sci-Fi response as function of hadron shower energy and of shower origin in the target.

Figure 11. Test beam detector at SPS.

Sci-Fi can be used for shower origin reconstruction. (criterion: >30 hits within 1.6 cm²) Correlation between the Sci-Fi & the **HCAL** signal sum:

π,μ 100-300Ge\ Figure 12. Detector layout.

Iron blocks instead of tungsten $7.5\lambda_{int}$ covers 95% of the 300 GeV pion shower profile.

Observation of collider ν_{μ} events

- To cope with unprecedented track density: 5×10^5 tracks/cm² developed tracing and vertexing algorithms.
- BDT analysis is applied for background rejection.

Next step: matching reconstructed vertices to electronic signals.

8 candidate events consistent with v_{μ} charged-current interactions with a significance of 6.80 were observed ³.

simulation (within 20%).

_70 _60 _50 _40 _30 _20 _10 x [cm]

Figure 17. Reconstructed Sci-Fi tracks x-y profile at the upstream detector face. (Hough Transform) .4

[2] Boyarsky, A., Mikulenko, O., Ovchynnikov, M., & Shchutska, L. (2022). Searches for new physics at SND@ LHC. Journal of High Energy Physics, 2022(3), 1-30.

131(3), 031802. [4] SND@LHC Collaboration. (2023). Measurement of the muon flux at the SND@ LHC experiment. arXiv preprint arXiv:2310.05536